在深度学习的学习过程中,可能会用到一些已经训练好的模型,比如Alex Net,google Net,VGG,Resnet等,那我们怎样对这些训练好的模型进行fine-tune来提高准确率呢?
参考文章:https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
使用已经训练好的VGG16模型来帮助我们进行这个分类任务,因为要分类的是猫,狗这类物体,而VGG net是在ImageNet上训练的,而imageNet实际上已经包含了这2种物体(猫,狗)了。
方法
首先载入VGG-16的权重
接下来在初始化好的VGG网络上添加我们预训练好的模型
最后将最后一个卷积块的层数冻结,然后以很低的学习率开始训练(我们只选择最后一个卷积块进行训练,因为训练样本很少,而VGG模型层数很多,全部训练肯定不能训练好,会过拟合)。其次fine-tune是由于在一个已经训练好的模型上进行的,故权值更新应该是一个小范围的,以免破坏预训练好的特征。
首先构造VGG16模型
# build the VGG16 network model = Sequential() model.add(ZeroPadding2D((1, 1), input_shape=(3, img_width, img_height))) model.add(Convolution2D(64, 3, 3, activation=‘relu‘, name=‘conv1_1‘)) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(64, 3, 3, activation=‘relu‘, name=‘conv1_2‘)) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation=‘relu‘, name=‘conv2_1‘)) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation=‘relu‘, name=‘conv2_2‘)) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation=‘relu‘, name=‘conv3_1‘)) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation=‘relu‘, name=‘conv3_2‘)) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation=‘relu‘, name=‘conv3_3‘)) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘, name=‘conv4_1‘)) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘, name=‘conv4_2‘)) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘, name=‘conv4_3‘)) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘, name=‘conv5_1‘)) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘, name=‘conv5_2‘)) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘, name=‘conv5_3‘)) model.add(MaxPooling2D((2, 2), strides=(2, 2)))
加载VGG16训练好的权重(我们只要全连接以前的权重):
# load the weights of the VGG16 networks # (trained on ImageNet, won the ILSVRC competition in 2014) # note: when there is a complete match between your model definition # and your weight savefile, you can simply call model.load_weights(filename) assert os.path.exists(weights_path), ‘Model weights not found (see "weights_path" variable in script).‘ f = h5py.File(weights_path) for k in range(f.attrs[‘nb_layers‘]): if k >= len(model.layers): # we don‘t look at the last (fully-connected) layers in the savefile break g = f[‘layer_{}‘.format(k)] weights = [g[‘param_{}‘.format(p)] for p in range(g.attrs[‘nb_params‘])] model.layers[k].set_weights(weights) f.close() print(‘Model loaded.‘)
然后再VGG16结构基础上添加一个简单的分类器及预训练好的模型:
# build a classifier model to put on top of the convolutional model top_model = Sequential() top_model.add(Flatten(input_shape=model.output_shape[1:])) top_model.add(Dense(256, activation=‘relu‘)) top_model.add(Dropout(0.5)) top_model.add(Dense(1, activation=‘sigmoid‘)) # note that it is necessary to start with a fully-trained # classifier, including the top classifier, # in order to successfully do fine-tuning top_model.load_weights(top_model_weights_path) # add the model on top of the convolutional base model.add(top_model)
把随后一个卷积块前的权重设置为不训练:
# set the first 25 layers (up to the last conv block) # to non-trainable (weights will not be updated) for layer in model.layers[:25]: layer.trainable = False # compile the model with a SGD/momentum optimizer # and a very slow learning rate. model.compile(loss=‘binary_crossentropy‘, optimizer=optimizers.SGD(lr=1e-4, momentum=0.9), metrics=[‘accuracy‘])
这样一个很简单的fine-tune在50个epoch后就可以达到一个大概0.94的accuracy