标准差(Standard Deviation)
各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
标准差也被称为标准偏差,或者实验标准差。
方差
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
区别:
标准差和均值的量纲(单位)是一致的,在描述一个波动范围时标准差比方差更方便。
比如一个班男生的平均身高是170cm,标准差是10cm,那么方差就是10cm^2。可以进行的比较简便的描述是本班男生身高分布是170±10cm,方差就无法做到这点。
再举个例子,从正态分布中抽出的一个样本落在[μ-3σ, μ+3σ]这个范围内的概率是99.7%,也可以称为“正负3个标准差”。如果没有标准差这个概念,我们使用方差来描述这个范围就略微绕了一点。万一这个分布是有实际背景的,这个范围描述还要加上一个单位,这时候为了方便,人们就自然而然地将这个量单独提取出来了。总结:
标准差比方差更加能反映数据于我们实际期望的值得偏离程度,如果我们只是简要的想要观察偏离程度,我们可以使用方差,如果我们想要更加细微的观察偏离程度,我们就要使用标准差。