题链:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2896
题解:
计算几何,骚操作
对于简单情况,即两只狗的路线均为一条线段,
可以从相对运动的角度出发,考虑一直狗不动,另一只狗在运动。
而由于两只狗此时都在做匀速直线运动,所以在那只不懂的狗看来,另一直狗也在匀速直线前行。(物理老师:速度的矢量和!)
所以这个简单情况下,问题就变为了求一个点到一条线段的最短和最长距离。
而本题中虽然路线为多条折线,但仍然可以根据拐点把路线拆为一个个的简单情况,进而即可求解。
代码:
#include<cmath> #include<cstdio> #include<cstring> #include<iostream> #define MAXN 60 using namespace std; const double eps=1e-8; struct Point{ double x,y; Point(double _x=0,double _y=0):x(_x),y(_y){} void Read(){scanf("%lf%lf",&x,&y);} }; int sign(double x){ if(fabs(x)<=eps) return 0; return x<0?-1:1; } typedef Point Vector; bool operator == (Point A,Point B){return sign(A.x-B.x)==0&&sign(A.y-B.y)==0;} Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);} Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);} Vector operator * (Vector A,double p){return Vector(A.x*p,A.y*p);} Vector operator / (Vector A,double p){return Vector(A.x/p,A.y/p);} double operator ^ (Vector A,Vector B){return A.x*B.y-A.y*B.x;} double operator * (Vector A,Vector B){return A.x*B.x+A.y*B.y;} Vector Va,Vb; Point Da[MAXN],Db[MAXN],Pa,Pb; int T,Na,Nb,ia,ib; double minans,maxans,La,Lb,Lena,Lenb,tim; double GL(Vector A){//Get_Length return sqrt(A*A); } double DTS(Point P,Point a1,Point a2){//Distance_To_Segment static Vector v1,v2,v3; v1=a2-a1; v2=P-a1; v3=P-a2; if(a1==a2) return GL(v2); if(sign(v1*v2)<0) return GL(v2); if(sign(v1*v3)>0) return GL(v3); return fabs(v2^v3)/GL(v1); } void contribution(Point P,Point a1,Point a2){ minans=min(minans,DTS(P,a1,a2)); maxans=max(maxans,GL(P-a1)); maxans=max(maxans,GL(P-a2)); } int main(){ freopen("/home/noilinux/Documents/模块学习/计算几何/11796.in","r",stdin); scanf("%d",&T); for(int t=1;t<=T;t++){ scanf("%d%d",&Na,&Nb); for(int i=1;i<=Na;i++) Da[i].Read(); for(int i=1;i<=Nb;i++) Db[i].Read(); Lena=Lenb=0; minans=1e9; maxans=-1e9; for(int i=1;i<Na;i++) Lena+=GL(Da[i+1]-Da[i]); for(int i=1;i<Nb;i++) Lenb+=GL(Db[i+1]-Db[i]); ia=1,ib=1; Pa=Da[1],Pb=Db[1]; while(ia<Na&&ib<Nb){ La=GL(Da[ia+1]-Pa); Lb=GL(Db[ib+1]-Pb); tim=min(La/Lena,Lb/Lenb); Va=(Da[ia+1]-Pa)/La*tim*Lena; Vb=(Db[ib+1]-Pb)/Lb*tim*Lenb; contribution(Pa,Pb,Pb+Vb-Va); Pa=Pa+Va; Pb=Pb+Vb; if(Pa==Da[ia+1]) ia++; if(Pb==Db[ib+1]) ib++; } printf("Case %d: %.0lf\n",t,maxans-minans); } return 0; }