ReLU函数

Posted highly

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ReLU函数相关的知识,希望对你有一定的参考价值。

Rectifier(neural networks)

在人工神经网络中,rectfier(整流器,校正器)是一个激活函数,它的定义是:参数中为正的部分。

{\\displaystyle f(x)=x^{+}=\\max(0,x)},

其中,x是神经元的输入。这也被称为ramp function(斜坡函数),类似于电气工程中半波整流。

 

由来:

2000年由Hahnloser et al等人首次将该激活函数引入动态网络中,具有强烈的生物学动机和数学理论。

此激活函数在 convolutional networks中被广泛应用,比logistic sigmoid更有效和实用。

rectfier是2017年深度神经网络中最流行的激活函数。

 

ReLU:

采用rectifier的单元被称为rectfier linear unit(ReLU)

rectifier的平滑近似是analytic function:

{\\displaystyle f(x)=\\log(1+\\exp x),}

被称为softplus function。它的偏导数是{\\displaystyle f\'(x)=\\exp x/(1+\\exp x)=1/(1+\\exp(-x))} 即逻辑函数

Rectified linear units在computer vision,speech recognition 等深度神经网络中有广泛应用。

Plot of the rectifier (blue) and softplus (green) functions near x = 0

 

Variants:

Noisy ReLUs

Rectfier linear units可以被扩展成包含Gaussian noise,

f(x)=\\max(0,x+Y), with Y\\sim {\\mathcal {N}}(0,\\sigma (x))

Noisy ReLUs成功应用在一些计算机视觉任务上。

 

Leaky ReLUs

Leaky ReLUs allow a small, non-zero gradient when the unit is not active.

Parametric ReLUs将coefficient of leakage(泄露系数)转化为与其它神经网络参数一起学习的参数

注意,如果a<=1,那么它等价于

   就与maxout networks有关

 

 

ELUs:

Exponential linear units try to make the mean activations closer to zero which speeds up learning. It has been shown that ELUs can obtain higher classification accuracy than ReLUs

 

a是需要调的参数,且a>=0

 

 

Advantages

 请参考

 https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

 

Potential problems

 请参考

 https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

 

 

 

 

 

 

 

 

 

 

 

 

以上是关于ReLU函数的主要内容,如果未能解决你的问题,请参考以下文章

激活函数——Relu,Swish

自适应参数化ReLU激活函数:注意力机制+ReLU激活函数

注意力机制+ReLU激活函数:自适应参数化ReLU激活函数

relu函数为分段线性函数,为什么会增加非线性元素

原来ReLU这么好用!一文带你深度了解ReLU激活函数!

注意力机制+ReLU激活函数=自适应参数化ReLU