视觉slam十四讲开源库安装教程
Posted feifanren
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了视觉slam十四讲开源库安装教程相关的知识,希望对你有一定的参考价值。
正文
前言
本篇博客主要写了视觉SLAM常用库的安装方法,主要包括Eigen线性代数库、Sophus李代数库、OpenCV计算机视觉库、PCL点云库、Ceres非线性优化库和G2O图优化库等。安装步骤是直接从高翔大牛书上搬抄过来了的,目的是为了大家学习SLAM时能够顺利安装好这些开源库。Ubuntu系统为14.04版本,亲测安装有效,童叟无欺!初步先写这些库的安装过程,可能后面会写学习库的笔记等。工欲善其事,必先利其器,大家一起快乐的学习视觉SLAM吧,加油!初稿完成于2017年7月23日上午晴
1、Eigen线性代数库的安装
Eigen库是一个C++线性代数开源库[1],它提供了有关线性代数、矩阵和矢量运算、数值分析及相关的算法。许多上层的软件库也使用Eigen进行矩阵运算,包括g2o、Sophus等。Eigen库由Ubuntu软件源中提供,通过apt命令可以很方便的安装Eigen。
sudo apt-get install libeigen3-dev
Eigen与其他库不同,它是一个由头文件搭建起来的库,Eigen头文件的默认安装位置在“/usr/include/eigen3/”中。我们在使用时,只需引入Eigen头文件,不需要链接它的库文件,在CMakeLists.txt里添加Eigen头文件的目录。
#添加头文件
include_directories("/usr/include/eigen3")
学习更多Eigen知识,请参考:http://eigen.tuxfamily.org/dox-devel/modules.html
2、Sophus李代数库的安装
Eigen库提供了几何模块,但是没有提供李代数的支持。一个较好的李代数库是由Strasdat维护的Sophus库。Sophus库支持三维运动的SO(3)、SE(3),此外还支持二维运动的SO(2)、SE(2)和相似变换Sim(3)等内容。它是直接在Eigen库基础上开发的,因此我们不需要安装额外的依赖库。读者可以直接从github上获取Sophus库[2],Sophus库有模板类库和非模板类库两个版本,本书选择的是非模板类库。可以通过输入以下命令获得非模板类的Sophus库:
git clone http://github.com/strasdat/Sophus.git
Sophus库本身是一个cmake工程,使用以下命令对它进行编译(Sophus库只需编译,无需安装)。
cd XXXX #进入Sophus库文件目录下
mkdir build #新建build文件夹
cd build #进入build文件夹
cmake .. #build上一层目录下执行CMake命令
make #编译
在CMakeLists.txt中添加Sophus库的头文件和库文件,如下所示。find_package命令是cmake提供的寻找某个库的头文件和库文件的命令。如果cmake能找到它,就会提供头文件和库文件所在目录的变量。
#为了使用Sophus,需要使用find_package命令
find_package( Sophus REQUIRED )
include_directories( ${Sophus_INCLUDE_DIRS}) #添加头文件目录
add_executable( useSophus useSophus.cpp) #添加可执行文件
target_link_libraries( useSophus ${Sophus_LIBRARIES} ) #添加库文件目录
3、OpenCV计算机视觉库的安装
OpenCV[3]提供了大量的开源视觉算法库,是计算机视觉中使用极其广泛的图像处理算法库。在Ubuntu下,可以选择从源代码安装和只安装库文件两种方式。从源代码安装是指从OpenCV官网中下载相应版本的OpenCV源码,然后使用cmake命令中编译安装,好处是可以选择的版本比较丰富,而且可以看到源代码;只安装库文件,是指安装由Ubuntu社区人员编译好的库文件,这样就无需重新编译一遍。本书使用的是OpenCV3系列,由OpenCV官网下载安装包编译安装。
在编译之前,需要先安装OpenCV库的依赖项:
sudo apt-get install build-essential libgtk2.0-dev libvtk5-dev libjpeg-dev libtiff4-dev libjasper-dev
libopenexr-dev libtbb-dev
在configure中选择默认设置即可,opencv3要下载一个ippicv的第三方包(ippicv_linux_20151201.tgz),直接下比较慢,可以自己下后,放到 3rdparty/ippicv/downloads/linux-808b791a6eac9ed78d32a7666804320e里即可。 然后对Opencv安装包编译安装,OpenCV库和普通的cmake工程一样,编译安装如下:
......
make #编译
sudo make install #安装
OpenCV库的头文件和库文件默认安装在"/usr/local"目录下,在CMakeLists.txt中添加OpenCV库的头文件和库问价如下所示:
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_INCLUDE_DIRS}) #添加头文件目录
add_executable( imageBasics imageBasics.cpp) #添加可执行文件
target_link_libraries( imageBasics ${OpenCV_LIBS} ) #添加库文件目录
注:在安装opencv 3.2时,由于ROS系统自带opencv2,因此需要修改安装目录,参考博客:ubuntu下opencv3.2.0和opencv2.4.8共存\\
4、PCL点云库的安装
PCL库是点云库(Point Cloud Library)[4]。PCL库的安装比较容易,输入以下命令即可(也可以使用源代码安装):
sudo add-apt-repository ppa:v-launchpad-jochen-sprickerhof-de/pcl
sudo apt-get update
sudo apt-get install libpcl-all
安装完成后,PCL库的头文件将安装在"/usr/include/pcl-1.7/"中。库文件位于"/usr/lib/"中。在CMakeLists中添加头文件和库文件如下:
find_package( PCL REQUIRED COMPOMENT common io )
include_directories( ${PCL_INCLUDE_DIRS}) #添加头文件目录
add_executable( joinMap joinMap.cpp) #添加可执行文件
target_link_libraries( joinMap ${PCL_LIBRARIES} ) #添加库文件目录
生成的点云文件以pcd的格式存储,用PCL提供的可视化程序打开这个文件:
pcl_viewer map.pcd
5、Ceres非线性优化库的安装
Ceres库是来自谷歌的非线性优化库[5],Ceres库面向通用的最小二乘问题的求解,作为用户,我们需要做的就是定义优化问题,然后设置一些选项,输入Ceres求解即可。Ceres库建议去github上下载[6],Ceres库是一个cmake工程,安装前需要安装它的依赖项,主要是谷歌的一些日志和测试工具。
sudo apt-get install liblpack-dev libsuitesparse-dev libcxsparse3.1.2 libgflags-dev
libgoogle-glog-dev libgtest-dev
安装好依赖项之后,使用cmake编译并安装Ceres库。Ceres库的头文件安装在"/usr/local/include/ceres/"目录下,库文件安装在"/usr/local/lib/"目录下。在CMakeList.txt中添加头文件和库文件路径的命令,如下。
# 添加cmake模块以使用ceres库
list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules )
find_package( Ceres REQUIRED )
include_directories( ${CERES_INCLUDE_DIRS}) #添加头文件目录
add_executable( curve_fitting main.cpp ) #添加可执行文件
target_link_libraries( curve_fitting ${CERES_LIBRARIES} ) #添加库文件目录
以上是关于视觉slam十四讲开源库安装教程的主要内容,如果未能解决你的问题,请参考以下文章
浅读《视觉SLAM十四讲:从理论到实践》--操作1--初识SLAM