视频流GPU解码在ffempg的实现-GPU解码器

Posted 风翼科技

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了视频流GPU解码在ffempg的实现-GPU解码器相关的知识,希望对你有一定的参考价值。

1.gpu解码器的基本调用流程

要做视频流解码,必须要了解cuda自身的解码流,因为二者是一样的底层实现,不一样的上层调用

那cuda的解码流程是如何的呢

https://developer.nvidia.com/nvidia-video-codec-sdk  下载 Video_Codec_SDK_8.0.14

解压开来

在sampls里面有几个针对不同场景应用的小例子,如果不知道自己该参考哪一个,就需要去看开发文档,doc里面有一个 NVENC_VideoEncoder_API_ProgGuide.pdf 文档

由于我这里使用的是视频流解码,所以最好去查看NvTranscoder这个demo.

在NvTranscoder里面主要关注红框中的这几个文件

NvTranscoder.cpp实现了主函数

VideoDecoder.cpp实现了解码

FrameQueue.cpp实现了gpu解码后的数据回调

 

先看NvTranscoder.cpp的主要代码(比较冗余,有兴趣可以全部看)

int main(int argc, char* argv[])
{
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
    typedef HMODULE CUDADRIVER;
#else
    typedef void *CUDADRIVER;
#endif
    CUDADRIVER hHandleDriver = 0;

    __cu(cuInit(0, __CUDA_API_VERSION, hHandleDriver));
    __cu(cuvidInit(0));

    EncodeConfig encodeConfig = { 0 };
    encodeConfig.endFrameIdx = INT_MAX;
    encodeConfig.bitrate = 5000000;
    encodeConfig.rcMode = NV_ENC_PARAMS_RC_CONSTQP;
    encodeConfig.gopLength = NVENC_INFINITE_GOPLENGTH;
    encodeConfig.codec = NV_ENC_H264;
    encodeConfig.fps = 0;
    encodeConfig.qp = 28;
    encodeConfig.i_quant_factor = DEFAULT_I_QFACTOR;
    encodeConfig.b_quant_factor = DEFAULT_B_QFACTOR;  
    encodeConfig.i_quant_offset = DEFAULT_I_QOFFSET;
    encodeConfig.b_quant_offset = DEFAULT_B_QOFFSET;   
    encodeConfig.presetGUID = NV_ENC_PRESET_DEFAULT_GUID;
    encodeConfig.pictureStruct = NV_ENC_PIC_STRUCT_FRAME;

    NVENCSTATUS nvStatus = CNvHWEncoder::ParseArguments(&encodeConfig, argc, argv);
    if (nvStatus != NV_ENC_SUCCESS)
    {
        PrintHelp();
        return 1;
    }

    if (!encodeConfig.inputFileName || !encodeConfig.outputFileName)
    {
        PrintHelp();
        return 1;
    }

    encodeConfig.fOutput = fopen(encodeConfig.outputFileName, "wb");
    if (encodeConfig.fOutput == NULL)
    {
        PRINTERR("Failed to create \\"%s\\"\\n", encodeConfig.outputFileName);
        return 1;
    }

    //init cuda
    CUcontext cudaCtx;
    CUdevice device;
    __cu(cuDeviceGet(&device, encodeConfig.deviceID));
    __cu(cuCtxCreate(&cudaCtx, CU_CTX_SCHED_AUTO, device));

    CUcontext curCtx;
    CUvideoctxlock ctxLock;
    __cu(cuCtxPopCurrent(&curCtx));
    __cu(cuvidCtxLockCreate(&ctxLock, curCtx));

    CudaDecoder* pDecoder   = new CudaDecoder;
    FrameQueue* pFrameQueue = new CUVIDFrameQueue(ctxLock);
    pDecoder->InitVideoDecoder(encodeConfig.inputFileName, ctxLock, pFrameQueue, encodeConfig.width, encodeConfig.height);

    int decodedW, decodedH, decodedFRN, decodedFRD, isProgressive;
    pDecoder->GetCodecParam(&decodedW, &decodedH, &decodedFRN, &decodedFRD, &isProgressive);
    if (decodedFRN <= 0 || decodedFRD <= 0) {
        decodedFRN = 30;
        decodedFRD = 1;
    }

    if(encodeConfig.width <= 0 || encodeConfig.height <= 0) {
        encodeConfig.width  = decodedW;
        encodeConfig.height = decodedH;
    }

    float fpsRatio = 1.f;
    if (encodeConfig.fps <= 0) {
        encodeConfig.fps = decodedFRN / decodedFRD;
    }
    else {
        fpsRatio = (float)encodeConfig.fps * decodedFRD / decodedFRN;
    }

    encodeConfig.pictureStruct = (isProgressive ? NV_ENC_PIC_STRUCT_FRAME : 0);
    pFrameQueue->init(encodeConfig.width, encodeConfig.height);

    VideoEncoder* pEncoder = new VideoEncoder(ctxLock);
    assert(pEncoder->GetHWEncoder());

    nvStatus = pEncoder->GetHWEncoder()->Initialize(cudaCtx, NV_ENC_DEVICE_TYPE_CUDA);
    if (nvStatus != NV_ENC_SUCCESS)
        return 1;

    encodeConfig.presetGUID = pEncoder->GetHWEncoder()->GetPresetGUID(encodeConfig.encoderPreset, encodeConfig.codec);

    printf("Encoding input           : \\"%s\\"\\n", encodeConfig.inputFileName);
    printf("         output          : \\"%s\\"\\n", encodeConfig.outputFileName);
    printf("         codec           : \\"%s\\"\\n", encodeConfig.codec == NV_ENC_HEVC ? "HEVC" : "H264");
    printf("         size            : %dx%d\\n", encodeConfig.width, encodeConfig.height);
    printf("         bitrate         : %d bits/sec\\n", encodeConfig.bitrate);
    printf("         vbvMaxBitrate   : %d bits/sec\\n", encodeConfig.vbvMaxBitrate);
    printf("         vbvSize         : %d bits\\n", encodeConfig.vbvSize);
    printf("         fps             : %d frames/sec\\n", encodeConfig.fps);
    printf("         rcMode          : %s\\n", encodeConfig.rcMode == NV_ENC_PARAMS_RC_CONSTQP ? "CONSTQP" :
                                              encodeConfig.rcMode == NV_ENC_PARAMS_RC_VBR ? "VBR" :
                                              encodeConfig.rcMode == NV_ENC_PARAMS_RC_CBR ? "CBR" :
                                              encodeConfig.rcMode == NV_ENC_PARAMS_RC_VBR_MINQP ? "VBR MINQP (deprecated)" :
                                              encodeConfig.rcMode == NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ ? "CBR_LOWDELAY_HQ" :
                                              encodeConfig.rcMode == NV_ENC_PARAMS_RC_CBR_HQ ? "CBR_HQ" :
                                              encodeConfig.rcMode == NV_ENC_PARAMS_RC_VBR_HQ ? "VBR_HQ" : "UNKNOWN");
    if (encodeConfig.gopLength == NVENC_INFINITE_GOPLENGTH)
        printf("         goplength       : INFINITE GOP \\n");
    else
        printf("         goplength       : %d \\n", encodeConfig.gopLength);
    printf("         B frames        : %d \\n", encodeConfig.numB);
    printf("         QP              : %d \\n", encodeConfig.qp);
    printf("         preset          : %s\\n", (encodeConfig.presetGUID == NV_ENC_PRESET_LOW_LATENCY_HQ_GUID) ? "LOW_LATENCY_HQ" :
        (encodeConfig.presetGUID == NV_ENC_PRESET_LOW_LATENCY_HP_GUID) ? "LOW_LATENCY_HP" :
        (encodeConfig.presetGUID == NV_ENC_PRESET_HQ_GUID) ? "HQ_PRESET" :
        (encodeConfig.presetGUID == NV_ENC_PRESET_HP_GUID) ? "HP_PRESET" :
        (encodeConfig.presetGUID == NV_ENC_PRESET_LOSSLESS_HP_GUID) ? "LOSSLESS_HP" : "LOW_LATENCY_DEFAULT");
    printf("\\n");

    nvStatus = pEncoder->GetHWEncoder()->CreateEncoder(&encodeConfig);
    if (nvStatus != NV_ENC_SUCCESS)
        return 1;

    nvStatus = pEncoder->AllocateIOBuffers(&encodeConfig);
    if (nvStatus != NV_ENC_SUCCESS)
        return 1;

    unsigned long long lStart, lEnd, lFreq;
    NvQueryPerformanceCounter(&lStart);

    //start decoding thread
#ifdef _WIN32
    HANDLE decodeThread = CreateThread(NULL, 0, DecodeProc, (LPVOID)pDecoder, 0, NULL);
#else
    pthread_t pid;
    pthread_create(&pid, NULL, DecodeProc, (void*)pDecoder);
#endif

    //start encoding thread
    int frmProcessed = 0;
    int frmActual = 0;
    while(!(pFrameQueue->isEndOfDecode() && pFrameQueue->isEmpty()) ) {

        CUVIDPARSERDISPINFO pInfo;
        if(pFrameQueue->dequeue(&pInfo)) {
            CUdeviceptr dMappedFrame = 0;
            unsigned int pitch;
            CUVIDPROCPARAMS oVPP = { 0 };
            oVPP.progressive_frame = pInfo.progressive_frame;
            oVPP.second_field = 0;
            oVPP.top_field_first = pInfo.top_field_first;
            oVPP.unpaired_field = (pInfo.progressive_frame == 1 || pInfo.repeat_first_field <= 1);

            cuvidMapVideoFrame(pDecoder->GetDecoder(), pInfo.picture_index, &dMappedFrame, &pitch, &oVPP);

            EncodeFrameConfig stEncodeConfig = { 0 };
            NV_ENC_PIC_STRUCT picType = (pInfo.progressive_frame || pInfo.repeat_first_field >= 2 ? NV_ENC_PIC_STRUCT_FRAME :
                (pInfo.top_field_first ? NV_ENC_PIC_STRUCT_FIELD_TOP_BOTTOM : NV_ENC_PIC_STRUCT_FIELD_BOTTOM_TOP));

            stEncodeConfig.dptr = dMappedFrame;
            stEncodeConfig.pitch = pitch;
            stEncodeConfig.width = encodeConfig.width;
            stEncodeConfig.height = encodeConfig.height;

            int dropOrDuplicate = MatchFPS(fpsRatio, frmProcessed, frmActual);
            for (int i = 0; i <= dropOrDuplicate; i++) {
                pEncoder->EncodeFrame(&stEncodeConfig, picType);
                frmActual++;
            }
            frmProcessed++;

            cuvidUnmapVideoFrame(pDecoder->GetDecoder(), dMappedFrame);
            pFrameQueue->releaseFrame(&pInfo);
       }
    }

    pEncoder->EncodeFrame(NULL, NV_ENC_PIC_STRUCT_FRAME, true);

#ifdef _WIN32
    WaitForSingleObject(decodeThread, INFINITE);
#else
    pthread_join(pid, NULL);
#endif

    if (pEncoder->GetEncodedFrames() > 0)
    {
        NvQueryPerformanceCounter(&lEnd);
        NvQueryPerformanceFrequency(&lFreq);
        double elapsedTime = (double)(lEnd - lStart)/(double)lFreq;
        printf("Total time: %fms, Decoded Frames: %d, Encoded Frames: %d, Average FPS: %f\\n",
        elapsedTime * 1000,
        pDecoder->m_decodedFrames,
        pEncoder->GetEncodedFrames(),
        (float)pEncoder->GetEncodedFrames() / elapsedTime);
    }

    pEncoder->Deinitialize();
    delete pDecoder;
    delete pEncoder;
    delete pFrameQueue;

    cuvidCtxLockDestroy(ctxLock);
    __cu(cuCtxDestroy(cudaCtx));

    return 0;
}
View Code

 

下面这个是我的主要流程精简版

int main(int argc, char* argv[])
{
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
    typedef HMODULE CUDADRIVER;
#else
    typedef void *CUDADRIVER;
#endif
    CUDADRIVER hHandleDriver = 0;

    __cu(cuInit(0, __CUDA_API_VERSION, hHandleDriver));//初始化cuda环境,必须的
    __cu(cuvidInit(0)); //初始化解码器


    //init cuda
    CUcontext cudaCtx;
    CUdevice device;
    __cu(cuDeviceGet(&device, deviceID)); //得到显卡操作对象,deviceID是显卡的id,一般说来如果一张显卡,id就是0,两张就是0,1
    __cu(cuCtxCreate(&cudaCtx, CU_CTX_SCHED_AUTO, device)); //创建对应显卡的运行环境

    CUcontext curCtx;
    CUvideoctxlock ctxLock;
    __cu(cuCtxPopCurrent(&curCtx));//弹出当前CPU线程的里面的可用的cuda环境,也就是上面创建的环境
    __cu(cuvidCtxLockCreate(&ctxLock, curCtx));//为gpu上锁
    CudaDecoder* pDecoder   = new CudaDecoder;//创建cuda解码对象(重点查看)
    FrameQueue* pFrameQueue = new CUVIDFrameQueue(ctxLock);//创建解码输出队列
    pDecoder->InitVideoDecoder(encodeConfig.inputFileName, ctxLock, pFrameQueue, encodeConfig.width, encodeConfig.height);//初始化解码器(重点查看)


    pFrameQueue->init(encodeConfig.width, encodeConfig.height);//初始化解码输出队列

    //启动解码线程
#ifdef _WIN32
    HANDLE decodeThread = CreateThread(NULL, 0, DecodeProc, (LPVOID)pDecoder, 0, NULL);
#else
    pthread_t pid;
    pthread_create(&pid, NULL, DecodeProc, (void*)pDecoder);
#endif

    //start encoding thread
    int frmProcessed = 0;
    int frmActual = 0;
    //从解码输出队列里面拉取解出来的数据
    while(!(pFrameQueue->isEndOfDecode() && pFrameQueue->isEmpty()) ) {

        CUVIDPARSERDISPINFO pInfo;
        if(pFrameQueue->dequeue(&pInfo)) {
            CUdeviceptr dMappedFrame = 0;
            unsigned int pitch;
            CUVIDPROCPARAMS oVPP = { 0 };
            oVPP.progressive_frame = pInfo.progressive_frame;
            oVPP.second_field = 0;
            oVPP.top_field_first = pInfo.top_field_first;
            oVPP.unpaired_field = (pInfo.progressive_frame == 1 || pInfo.repeat_first_field <= 1);
            //获取数据在GPU中的地址dMappedFrame,大小为pitch个
            cuvidMapVideoFrame(pDecoder->GetDecoder(), pInfo.picture_index, &dMappedFrame, &pitch, &oVPP);
            //因为解码后的数据地址还是在GPU中,所有需要找到
              unsigned int nv12_size = pitch * (pDecoder->iHeight + pDecoder->iHeight/2);  // 12bpp  
            //从GPU内存拷贝到pa->pFrameBuffer(CPU的内存地址)
            oResult = cuMemcpyDtoH(pa->pFrameBuffer, dMappedFrame, nv12_size);  
    
            //释放GPU中的内存
            cuvidUnmapVideoFrame(pDecoder->GetDecoder(), dMappedFrame);
            pFrameQueue->releaseFrame(&pInfo);
       }
    }


#ifdef _WIN32
    WaitForSingleObject(decodeThread, INFINITE);
#else
    pthread_join(pid, NULL);
#endif
    delete pDecoder;
    delete pFrameQueue;

    cuvidCtxLockDestroy(ctxLock);
    __cu(cuCtxDestroy(cudaCtx));

    return 0;
}

 

其中的解码器的流程调用是重点关注的

new解码器

CudaDecoder::CudaDecoder() : m_videoSource(NULL), m_videoParser(NULL), m_videoDecoder(NULL),
    m_ctxLock(NULL), m_decodedFrames(0), m_bFinish(false)
{
}
View Code

初始化解码器,这里创建了三个对象,一个是源,一个是解码器,一个是解析器,

//初始化Gpu解码器
void CudaDecoder::InitVideoDecoder(const char* videoPath, CUvideoctxlock ctxLock, FrameQueue* pFrameQueue,
        int targetWidth, int targetHeight)
{
    assert(videoPath);//数据流地址
    assert(ctxLock);
    assert(pFrameQueue);

    m_pFrameQueue = pFrameQueue;

    CUresult oResult;
    m_ctxLock = ctxLock;

    //init video source
    CUVIDSOURCEPARAMS oVideoSourceParameters;
    memset(&oVideoSourceParameters, 0, sizeof(CUVIDSOURCEPARAMS));
    oVideoSourceParameters.pUserData = this;
    oVideoSourceParameters.pfnVideoDataHandler = HandleVideoData;
    oVideoSourceParameters.pfnAudioDataHandler = NULL;

    oResult = cuvidCreateVideoSource(&m_videoSource, videoPath, &oVideoSourceParameters);//创建数据源对象,目的是在回调里面得到数据包,然后在回调里面可以用m_videoParser处理,只支持文件
    if (oResult != CUDA_SUCCESS) {
        fprintf(stderr, "cuvidCreateVideoSource failed\\n");
        fprintf(stderr, "Please check if the path exists, or the video is a valid H264 file\\n");
        exit(-1);
    }

    //init video decoder
    CUVIDEOFORMAT oFormat;
    cuvidGetSourceVideoFormat(m_videoSource, &oFormat, 0);

    if (oFormat.codec != cudaVideoCodec_H264 && oFormat.codec != cudaVideoCodec_HEVC) {
        fprintf(stderr, "The sample only supports H264/HEVC input video!\\n");
        exit(-1);
    }

    if (oFormat.chroma_format != cudaVideoChromaFormat_420) {
        fprintf(stderr, "The sample only supports 4:2:0 chroma!\\n");
        exit(-1);
    }

    CUVIDDECODECREATEINFO oVideoDecodeCreateInfo;
    memset(&oVideoDecodeCreateInfo, 0, sizeof(CUVIDDECODECREATEINFO));
    oVideoDecodeCreateInfo.CodecType = oFormat.codec;
    oVideoDecodeCreateInfo.ulWidth   = oFormat.coded_width;
    oVideoDecodeCreateInfo.ulHeight  = oFormat.coded_height;
    oVideoDecodeCreateInfo.ulNumDecodeSurfaces = 8;
    if ((oVideoDecodeCreateInfo.CodecType == cudaVideoCodec_H264) ||
        (oVideoDecodeCreateInfo.CodecType == cudaVideoCodec_H264_SVC) ||
        (oVideoDecodeCreateInfo.CodecType == cudaVideoCodec_H264_MVC))
    {
        // assume worst-case of 20 decode surfaces for H264
        oVideoDecodeCreateInfo.ulNumDecodeSurfaces = 20;
    }
    if (oVideoDecodeCreateInfo.CodecType == cudaVideoCodec_VP9)
        oVideoDecodeCreateInfo.ulNumDecodeSurfaces = 12;
    if (oVideoDecodeCreateInfo.CodecType == cudaVideoCodec_HEVC)
    {
        // ref HEVC spec: A.4.1 General tier and level limits
        int MaxLumaPS = 35651584; // currently assuming level 6.2, 8Kx4K
        int MaxDpbPicBuf = 6;
        int PicSizeInSamplesY = oVideoDecodeCreateInfo.ulWidth * oVideoDecodeCreateInfo.ulHeight;
        int MaxDpbSize;
        if (PicSizeInSamplesY <= (MaxLumaPS>>2))
            MaxDpbSize = MaxDpbPicBuf * 4;
        else if (PicSizeInSamplesY <= (MaxLumaPS>>1))
            MaxDpbSize = MaxDpbPicBuf * 2;
        else if (PicSizeInSamplesY <= ((3*MaxLumaPS)>>2))
            MaxDpbSize = (MaxDpbPicBuf * 4) / 3;
        else
            MaxDpbSize = MaxDpbPicBuf;
        MaxDpbSize = MaxDpbSize < 16 ? MaxDpbSize : 16;
        oVideoDecodeCreateInfo.ulNumDecodeSurfaces = MaxDpbSize + 4;
    }
    oVideoDecodeCreateInfo.ChromaFormat = oFormat.chroma_format;
    oVideoDecodeCreateInfo.OutputFormat = cudaVideoSurfaceFormat_NV12;//设置输出格式为NV12
    oVideoDecodeCreateInfo.DeinterlaceMode = cudaVideoDeinterlaceMode_Weave;

    if (targetWidth <= 0 || targetHeight <= 0) {
        oVideoDecodeCreateInfo.ulTargetWidth  = oFormat.display_area.right - oFormat.display_area.left;
        oVideoDecodeCreateInfo.ulTargetHeight = oFormat.display_area.bottom - oFormat.display_area.top;
    }
    else {
        oVideoDecodeCreateInfo.ulTargetWidth  = targetWidth;//输出长宽
        oVideoDecodeCreateInfo.ulTargetHeight = targetHeight;
    }
    oVideoDecodeCreateInfo.display_area.left   = 0;
    oVideoDecodeCreateInfo.display_area.right  = (short)oVideoDecodeCreateInfo.ulTargetWidth;
    oVideoDecodeCreateInfo.display_area.top    = 0;
    oVideoDecodeCreateInfo.display_area.bottom = (short)oVideoDecodeCreateInfo.ulTargetHeight;

    oVideoDecodeCreateInfo.ulNumOutputSurfaces = 2;
    oVideoDecodeCreateInfo.ulCreationFlags = cudaVideoCreate_PreferCUVID;
    oVideoDecodeCreateInfo.vidLock = m_ctxLock;

    oResult = cuvidCreateDecoder(&m_videoDecoder, &oVideoDecodeCreateInfo);//创建解码器
    if (oResult != CUDA_SUCCESS) {
        fprintf(stderr, "cuvidCreateDecoder() failed, error code: %d\\n", oResult);
        exit(-1);
    }

    m_oVideoDecodeCreateInfo = oVideoDecodeCreateInfo;

    //init video parser
    CUVIDPARSERPARAMS oVideoParserParameters;
    memset(&oVideoParserParameters, 0, sizeof(CUVIDPARSERPARAMS));
    oVideoParserParameters.CodecType = oVideoDecodeCreateInfo.CodecType;
    oVideoParserParameters.ulMaxNumDecodeSurfaces = oVideoDecodeCreateInfo.ulNumDecodeSurfaces;
    oVideoParserParameters.ulMaxDisplayDelay = 1;
    oVideoParserParameters.pUserData = this;
    oVideoParserParameters.pfnSequenceCallback = HandleVideoSequence;//数据源拉取出来的回调
    oVideoParserParameters.pfnDecodePicture = HandlePictureDecode;
    oVideoParserParameters.pfnDisplayPicture = HandlePictureDisplay;//解码后的数据回调

    oResult = cuvidCreateVideoParser(&m_videoParser, &oVideoParserParameters);//创建解析器 目的是协助解析包,可以回调得到每帧的格式,回调得到预解码的数据,回调得到最后图片数据
    if (oResult != CUDA_SUCCESS) {
        fprintf(stderr, "cuvidCreateVideoParser failed, error code: %d\\n", oResult);
        exit(-1);
    }
}
View Code

 

源对象加载数据后会回调,里面有CUVIDSOURCEDATAPACKET格式的数据包,数据包会给解析器,解析器回传数据给解码器,解码器把数据回传给队列,发往主线程

static int CUDAAPI HandleVideoData(void* pUserData, CUVIDSOURCEDATAPACKET* pPacket)
{
    assert(pUserData);
    CudaDecoder* pDecoder = (CudaDecoder*)pUserData;

    CUresult oResult = cuvidParseVideoData(pDecoder->m_videoParser, pPacket);
    if(oResult != CUDA_SUCCESS) {
        printf("error!\\n");
    }

    return 1;
}

static int CUDAAPI HandleVideoSequence(void* pUserData, CUVIDEOFORMAT* pFormat)
{
    assert(pUserData);
    CudaDecoder* pDecoder = (CudaDecoder*)pUserData;

    if ((pFormat->codec         != pDecoder->m_oVideoDecodeCreateInfo.CodecType) ||         // codec-type
        (pFormat->coded_width   != pDecoder->m_oVideoDecodeCreateInfo.ulWidth)   ||
        (pFormat->coded_height  != pDecoder->m_oVideoDecodeCreateInfo.ulHeight)  ||
        (pFormat->chroma_format != pDecoder->m_oVideoDecodeCreateInfo.ChromaFormat))
    {
        fprintf(stderr, "NvTranscoder doesn\'t deal with dynamic video format changing\\n");
        return 0;
    }

    return 1;
}

static int CUDAAPI HandlePictureDecode(void* pUserData, CUVIDPICPARAMS* pPicParams)
{
    assert(pUserData);
    CudaDecoder* pDecoder = (CudaDecoder*)pUserData;
    pDecoder->m_pFrameQueue->waitUntilFrameAvailable(pPicParams->CurrPicIdx);
    assert(CUDA_SUCCESS == cuvidDecodePicture(pDecoder->m_videoDecoder, pPicParams));
    return 1;
}

static int CUDAAPI HandlePictureDisplay(void* pUserData, CUVIDPARSERDISPINFO* pPicParams)
{
    assert(pUserData);
    CudaDecoder* pDecoder = (CudaDecoder*)pUserData;
    pDecoder->m_pFrameQueue->enqueue(pPicParams);
    pDecoder->m_decodedFrames++;

    return 1;
}
View Code

 

看了以上流程,估计有一个大概的流程在心里了,

必要的gpu初始化------》初始化解码器,解析器,源解释器------》运行-----》处理输出数据

2.自己解码器的调用对接

现在轮到我们自己的需求,我的需求就是实现那个ffmpeg的解码GPU化,先看看官方文档

首先用这个必须有一些要求

NVIDIA Video Codec SDK 8.0

System Requirements

* NVIDIA Kepler/Maxwell/Pascal GPU with hardware video accelerators - Refer to the NVIDIA Video SDK developer zone web page (https://developer.nvidia.com/nvidia-video-codec-sdk) for GPUs which
support encoding and decoding acceleration.
* Windows: Driver version 378.66 or higher
* Linux:   Driver version 378.13 or higher
* CUDA 7.5 Toolkit (optional)

[Windows Configuration Requirements]
- DirectX SDK is needed. You can download the latest SDK from Microsoft\'s DirectX website
- The CUDA 7.5 Toolkit is optional to install (see below on how to get it)
- CUDA toolkit is used for building CUDA kernels that can interop with NVENC.

The following environment variables need to be set to build the sample applications included with the SDK
* For Windows
  - DXSDK_DIR: pointing to the DirectX SDK root directory

[Linux Configuration Requirements]    
* For Linux
  - X11 and OpenGL, GLUT, GLEW libraries for video playback and display 
  - The CUDA 7.5 Toolkit is optional to install (see below on how to get it)
  - CUDA toolkit is used for building CUDA kernels that can interop with NVENC.  

我看下了我的linux基本满足条件

 

验证可行性

再看Using_FFmpeg_with_NVIDIA_GPU_Hardware_Acceleration.pdf里面的提示可以直接编译ffmpeg,使用它自带的cuda解码器来测试解码,不过也是有要求的

对号入座,我用的是8.0,所以使用ffmpeg3.4

编译

./configure --enable-shared  -–enable-cuda --enable-cuvid --enable-nvenc --enable-nonfree -–enable-libnpp --extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64 --prefix=/home/user/mjl/algo/ffmpeg/build


make -j 4(建议用四线程,八线程可能出现找不到的错误)

验证

 ffmpeg -y -hwaccel cuvid -c:v h264_cuvid -vsync 0 -i input.mp4 -vf scale_npp=1920:1072 -vcodec h264_nvenc output0.264 -vf scale_npp=1280:720 -vcodec h264_nvenc output1.264
报错:Unknown decoder \'h264_cuvid\'

注意一定要在超级管理员权限下面运行,应为只有超级管理员才能访问gpu

正常输出了文件,证明可行

关于它自带的解码器,我一直不是很了解,ffmpeg在初始化的时候统一注册了各种编解码器,但是如何在上层简单的调用,一直不明白,这点可以大家交流

我这里是自己直接对接,也便于控制数据

 

 

avformat_network_init();
    av_register_all();//1.注册各种编码解码模块,如果3.3及以上版本,里面包含GPU解码模块
  
    std::string tempfile = “xxxx”;//视频流地址

    avformat_find_stream_info(format_context_, nullptr)//2.拉取一小段数据流分析,便于得到数据的基本格式
    if (AVMEDIA_TYPE_VIDEO == enc->codec_type && video_stream_index_ < 0)//3.筛选出视频流
    codec_ = avcodec_find_decoder(enc->codec_id);//4.找到对应的解码器
    codec_context_ = avcodec_alloc_context3(codec_);//5.创建解码器对应的结构体
    
    av_read_frame(format_context_, &packet_); //6.读取数据包
    
    avcodec_send_packet(codec_context_, &packet_) //7.发出解码
    avcodec_receive_frame(codec_context_, yuv_frame_) //8.接收解码 
    
    sws_scale(y2r_sws_context_, yuv_frame_->data, yuv_frame_->linesize, 0, codec_context_->height, rgb_data_, rgb_line_size_) //9.数据格式转换

在第一节中说过,4,7,8,9步骤需要修改

数据还是由ffmpeg拉取,也就是说不需要cuda自带的源获取器,只需要对接解码器和解析器(如果拉取数据也可以用GPU会更好)

而在ffmpeg中出来的数据格式是AVPacket,而cuda解码器需要的格式是CUVIDSOURCEDATAPACKET,所以涉及到格式的转换

开始的时候我在网上资料发现一个 https://www.cnblogs.com/dwdxdy/archive/2013/08/07/3244723.html  这位兄弟的格式转换部分是这样实现的

 我试过,不行的,没有任何解码输出!

https://www.cnblogs.com/betterwgo/p/6613641.html 这位兄弟比较全面,但是其中的

void VideoSource::play_thread(LPVOID lpParam)
{
    AVPacket *avpkt;
    avpkt = (AVPacket *)av_malloc(sizeof(AV

以上是关于视频流GPU解码在ffempg的实现-GPU解码器的主要内容,如果未能解决你的问题,请参考以下文章

ffempg支持文件解码

GPU编解码GPU硬解码---DXVA

GPU编解码GPU硬编码

视频解码性能对比opencv + cuvid + gpu vs. ffmpeg + cpu

在 Android 中使用 GPU 进行视频录制和播放

记录一个问题linux + opencv + gpu视频解码,好不容易编译通过,运行又coredump了