tensorflow 传入值-老鱼学tensorflow

Posted 曾想技术改变世界,不料世界改变了我们

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow 传入值-老鱼学tensorflow相关的知识,希望对你有一定的参考价值。

上个文章中讲述了tensorflow中如何定义变量以及如何读取变量的方式,本节主要讲述关于传入值。
变量主要用于在tensorflow系统中经常会被改变的值,而对于传入值,它只是当tensorflow系统运行时预先设置的值,然后在运行期间不会被改变,有点类似函数中的不可变的输入参数。

传入值同常量之间的差别是:常量在tensorflow系统运行之前就已经确定了的值,无法对其进行任何的改变。
而传入值或称为placeholder是在系统运行前需要对其进行设置相应的值。
我们来看一个例子,这个例子只是用tensorflow来计算input1*input2的值:

import tensorflow as tf
# 计算output = input1*input2
# 定义placeholder时需要同时指定其类型,其实在机器学习的数据类型中一般都是为float32类型
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

output = tf.multiply(input1, input2)

sess = tf.Session()
# 传入placeholder的值用其中的feed_dict来定义
print(sess.run(output, feed_dict={input1:8, input2:9}))

输出为:

72.0

是不是很简单。

以上是关于tensorflow 传入值-老鱼学tensorflow的主要内容,如果未能解决你的问题,请参考以下文章

tensorflow Tensorboard2-老鱼学tensorflow

tensorflow分类-老鱼学tensorflow

tensorflow例子-老鱼学tensorflow

tensorflow添加层-老鱼学tensorflow

tensorflow安装-老鱼学tensorflow

tensorflow Tensorboard可视化-老鱼学tensorflow