http://www.lydsy.com/JudgeOnline/problem.php?id=1867
dp[i][j] 落到(i,j)的方案数
dp[i][j]=0.5*dp[i-1][j] [(i-1,j)位置有钉子] + 0.5*dp[i-1][j-1] [(i-1.j-1)位置有钉子] + dp[i-1][j-2] [(i-1,j-2)位置没有钉子]
#include<cstdio> #include<iostream> using namespace std; typedef long long LL; #define N 52 bool nail[N][N]; LL getgcd(LL a,LL b) { return !b ? a : getgcd(b,a%b); } struct Fraction { LL molecule,denominator; void operator = (int p) { molecule=p; denominator=1; } Fraction operator * (Fraction p) { Fraction c; c.molecule=molecule; c.denominator=denominator<<1; LL gcd=getgcd(c.molecule,c.denominator); c.molecule/=gcd; c.denominator/=gcd; return c; } void operator += (Fraction p) { if(!denominator) { *this=p; return; } Fraction c; LL gcd=getgcd(denominator,p.denominator); c.denominator=denominator/gcd*p.denominator; c.molecule=c.denominator/denominator*molecule+c.denominator/p.denominator*p.molecule; *this=c; } bool have() { return denominator; } void print() { if(!molecule) denominator=1; cout<<molecule<<‘/‘<<denominator; } }half; Fraction dp[N][N]; char getc() { char c; while(1) { c=getchar(); if(c==‘*‘||c==‘.‘) return c; } } int main() { int n,m; scanf("%d%d",&n,&m); char c; for(int i=1;i<=n;++i) for(int j=1;j<=i;++j) { c=getc(); if(c==‘*‘) nail[i][j]=true; } dp[1][1]=1; for(int i=2;i<=n+1;++i) for(int j=1;j<=i;++j) { if(nail[i-1][j-1] && dp[i-1][j-1].have()) dp[i][j]+=dp[i-1][j-1]*half; if(nail[i-1][j] && dp[i-1][j].have()) dp[i][j]+=dp[i-1][j]*half; if(!nail[i-2][j-1] && dp[i-2][j-1].have()) dp[i][j]+=dp[i-2][j-1]; } dp[n+1][m+1].print(); }
1867: [Noi1999]钉子和小球
Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 880 Solved: 355
[Submit][Status][Discuss]
Description
Input
第1行为整数n(2<=n<=50)和m(0<=m<=n)。以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉子被拔去,注意在这n行中空格符可能出现在任何位置。
Output
仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm。既约分数的定义:A/B是既约分数,当且仅当A、B为正整数且A和B没有大于1的公因子。
Sample Input
5 2
Sample Output
7/16