滤波实质上就是对图像进行卷积运算。而卷积的运算可以分为反转、平移,相乘,求和。
在图像处理中,图像是一个大矩阵,卷积模板是一个小矩阵。按照上述过程,就是先把小矩阵反转,然后平移到某一位置,小矩阵的每一个小格
对应大矩阵里面的一个小格,然后把对应小格里面的数相乘,把所有对应小格相乘的结果相加求和,得出的最后结果赋值给小矩阵中央小格对应
的图像中小格的值,替换原来的值。就是上述说到的,反转、平移、相乘、求和。
一般图像卷积就是从第一个像素(小格)开始遍历到最后一个像素(小格)。之后的平滑、模糊、锐化、边缘提取等本质上都是卷积,只是模板
不同。
了解以上之后,就很好理解了。均值滤波就是对模板对应的图像像素求均值然后赋值给模板中心对应的那个像素值。高斯滤波模板是二维高斯函
数的离散化表示,高斯函数就是我们熟悉的正态分布。所以可以知道模板是中心值大,而越往外越小,高斯模板就是按照高斯函数递减的模板。
如果把模板小矩阵的每一个元素视为一个权值的话,均值滤波就是所有元素权值相等,高斯滤波就是中心点权值最大,越往外所占越小。比平均
滤波的好处是可以突出重点。
**********************************************
高斯滤波、均值滤波、中值滤波各自的优缺点
高斯滤波
由于高斯函数的傅立叶变换仍是高斯函数, 因此高斯函数能构成一个在频域具有平滑性能的低通滤波器。可以通过在频域做乘积来实现高斯滤波。均值滤波是对是对信号进行局部平均, 以平均值来代表该像素点的灰度值。矩形滤波器(Averaging Box Filter)对这个二维矢量的每一个分量进行独立的平滑处理。通过计算和转化 ,得到一幅单位矢量图。这个 512×512的矢量图被划分成一个 8×8的小区域 ,再在每一个小区域中 ,统计这个区域内的主要方向 ,亦即将对该区域内点方向数进行统计,最多的方向作为区域的主方向。于是就得到了一个新的64×64的矢量图。这个新的矢量图还可以采用一个 3×3模板进行进一步的平滑。
均值滤波
把每个像素都用周围的8个像素来做均值操作。可以平滑图像,速度快,算法简单。但是无法去掉噪声,这能微弱的减弱它。
中值滤波
常用的非线性滤波方法 ,也是图像处理技术中最常用的预处理技术。它在平滑脉冲噪声方面非常有效,同时它可以保护图像尖锐的边缘。加权中值滤波能够改进中值滤波的边缘信号保持效果。但对方向性很强的指纹图像进行滤波处理时 ,有必要引入方向信息,即利用指纹方向图来指导中值滤波的进行。
补充
高斯模糊是低通滤波的一种,也就是滤波函数是高斯函数,由于理想低通滤波会带来振铃现象,所以往往采用巴特尔茨或者高斯函数作为滤波函数。
高斯滤波是指用高斯函数作为滤波函数,至于是不是模糊,要看是高斯低通还是高斯高通,低通就是模糊,高通就是锐化。