http://poj.org/problem?id=2079
题目大意:求最大面积的三角形。
——————————————————
可以知道,最大面积的三角形的顶点一定是最大凸包的顶点。
接下来就是O(n*n)的常数优化题了(利用单峰性)。
(但其实不是n*n的,因为我们求的是纯凸包,所以n会小一些)
#include<cstdio> #include<queue> #include<cctype> #include<cstring> #include<stack> #include<cmath> #include<algorithm> using namespace std; typedef double dl; const dl eps=1e-9; const int N=50001; struct point{ dl x; dl y; }p[N],q[N]; int n,per[N],l; inline point getmag(point a,point b){ point s; s.x=b.x-a.x;s.y=b.y-a.y; return s; } inline dl multiX(point a,point b){ return a.x*b.y-b.x*a.y; } inline dl dis(point a,point b){ return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); } inline bool cmp(int u,int v){ dl det=multiX(getmag(p[1],p[u]),getmag(p[1],p[v])); if(fabs(det)>eps)return det>eps; return dis(p[1],p[u])-dis(p[1],p[v])<-eps; } void graham(){ int id=1; for(int i=2;i<=n;i++){ if(p[i].x-p[id].x<-eps||(fabs(p[i].x-p[id].x)<eps&&p[i].y-p[id].y<-eps))id=i; } if(id!=1)swap(p[1],p[id]); for(int i=1;i<=n;i++)per[i]=i; sort(per+2,per+n+1,cmp); l=0; q[++l]=p[1]; for(int i=2;i<=n;i++){ int j=per[i]; while(l>=2&&multiX(getmag(q[l-1],p[j]),getmag(q[l-1],q[l]))>-eps){ l--; } q[++l]=p[j]; } return; } inline dl area(){ if(l<=2)return 0; dl ans=0; for(int i=1;i<=l;i++){ int j=i%l+1; int k=j%l+1; while(233){ dl s1=multiX(getmag(q[i],q[j]),getmag(q[i],q[k])); dl s2=multiX(getmag(q[i],q[j]),getmag(q[i],q[k%l+1])); if(fabs(s1)-fabs(s2)>-eps){ break; } k=k%l+1; } while(i!=j&&j!=k&&i!=k){ dl s=multiX(getmag(q[i],q[j]),getmag(q[i],q[k])); ans=max(ans,fabs(s)/2.0); while(233){ dl s1=multiX(getmag(q[i],q[j]),getmag(q[i],q[k])); dl s2=multiX(getmag(q[i],q[j]),getmag(q[i],q[k%l+1])); if(fabs(s1)-fabs(s2)>-eps){ break; } k=k%l+1; } j=j%l+1; } } return ans; } int main(){ while(scanf("%d",&n)!=EOF&&n!=-1){ for(int i=1;i<=n;i++)scanf("%lf%lf",&p[i].x,&p[i].y); graham(); printf("%.2f\n",area()); } return 0; }