这道题为中等题
题目:
A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], ... } subjected to the rule below. Suppose the first element in S starts with the selection of element A[i] of index = i, the next element in S should be A[A[i]], and then A[A[A[i]]]… By that analogy, we stop adding right before a duplicate element occurs in S. Example 1: Input: A = [5,4,0,3,1,6,2] Output: 6 Explanation: A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2. One of the longest S[K]: S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0} Note: N is an integer within the range [1, 20,000]. The elements of A are all distinct. Each element of A is an integer within the range [0, N-1].
思路:
这道题思路还是比较简单,最开始我没仔细看题目要求,他的列表中没有重复项,结果导致代码超时。这个题主要用另外一个列表来判断这个元素是否被遍历,如果被搜索过就将其值置为1,否则计数值num+=1,每遍历一个元素就比较一次max_num.
代码:
class Solution(object): def arrayNesting(self, nums): """ :type nums: List[int] :rtype: int """ n = len(nums) a = [0 for j in range(n)] num = 0 max_num = 0 for i in range(n): num = 0 while a[i] != 1: a[i] = 1 i = nums[i] num += 1 max_num = max(max_num, num) return max_num