神经网络梯度弥散(消散)和梯度爆炸

Posted 下路派出所

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了神经网络梯度弥散(消散)和梯度爆炸相关的知识,希望对你有一定的参考价值。

靠近输入的神经元会比靠近输出的神经元的梯度成指数级衰减

 

靠近输出层的hidden layer 梯度大,参数更新快,所以很快就会收敛;

而靠近输入层的hidden layer 梯度小,参数更新慢,几乎就和初始状态一样,随机分布。

这种现象就是梯度弥散(vanishing gradient problem)。

而在另一种情况中,前面layer的梯度通过训练变大,而后面layer的梯度指数级增大,这种现象又叫做梯度爆炸(exploding gradient problem)。

总的来说,就是在这个深度网络中,梯度相当不稳定(unstable)。

 

1.梯度消失(vanishing gradient problem):

原因:例如三个隐层、单神经元网络:

假设上面是一个三层hidden layer的神经网络,每一层只有一个neuron,我们下面的分析仅仅针对bias,w也是可以类比的。

C是损失函数。

每一层的输入为z,输出为a,其中有z = w*a + b。

上面的等式∂c/∂b1由每一层的导数乘上对应的w最后乘上∂c/∂a4组成。

我们给b1一个小的改变Δb1,它会在神经网络中起连锁反应,影响最后的C。

我们使用变化率∂c/∂b1~Δc/Δb1来估计梯度。接下来可以进行递推了。

 

先来计算Δb1对a1的影响。σ(z)为sigmoid函数。

 

 

结果正好是上面∂c/∂b1等式的第一项,然后影响下一层的输出。

将上面推导出来的两个式子联合起来,就得到b1对于z2的影响:

再和∂c/∂b1等式对比一下,惊喜!!

然后的推导就是完全一样了,每个neuron的导数,乘上w,最终得到C的变化量:

两边除以Δb1:

 

sigmoid导数图像:

sigmoid导数在0取得最大值1/4。

如果我们使用均值为0,方差为1的高斯分布初始化参数w,有|w| < 1,所以有:

可以看出随着网络层数的加深的term也会变多,最后的乘积会指数级衰减,

这就是梯度弥散的根本原因。

而有人要问在train的时候如果参数w变得足够大,就可能使|w|>1,就不满足了。

的确这样不会有梯度弥散问题,根据我们之前的分析,当|W|>1时,会使后面的layer参数指数级增加,从而引发梯度爆炸。

 

2.梯度爆炸(exploding gradient problem):

当权值过大,前面层比后面层梯度变化更快,会引起梯度爆炸问题。

 

3.sigmoid时,消失和爆炸哪个更易发生?

量化分析梯度爆炸出现时a的树枝范围:因为sigmoid导数最大为1/4,故只有当abs(w)>4时才可能出现

由此计算出a的数值变化范围很小,仅仅在此窄范围内会出现梯度爆炸问题。而最普遍发生的是梯度消失问题。

4.如何解决梯度消失和梯度爆炸?

梯度消失:

  1.使用ReLU,maxout等替代sigmoid。

梯度爆炸:

  1.使用Gradient Clipping(梯度裁剪)。通过Gradient Clipping,将梯度约束在一个范围内,这样不会使得梯度过大。 

 

Relu和sigmoid区别:

1)sigmoid函数值在[0,1],ReLU函数值在[0,+无穷],所以sigmoid函数可以描述概率,ReLU适合用来描述实数;

(2)sigmoid函数的梯度随着x的增大或减小和消失,而ReLU不会。

 

以上是关于神经网络梯度弥散(消散)和梯度爆炸的主要内容,如果未能解决你的问题,请参考以下文章

[人工智能-深度学习-36]:卷积神经网络CNN - 简单地网络层数堆叠导致的问题分析(梯度消失梯度弥散梯度爆炸)与解决之道

梯度弥散与梯度弥散

再聊聊梯度消失与梯度爆炸

梯度爆炸是什么?有什么后果?如何判断梯度爆炸?如何避免梯度爆炸?

《有趣的机器学习》--网易云课堂

梯度消失和梯度爆炸问题详解