http://poj.org/problem?id=3308
考虑答案不是乘积而是和的做法,
因为对于每一个伞兵我们要么在这行内安装大炮消灭它
要么在这列中安装大炮消灭它,所以容易看出这是一个最小边覆盖集的问题
所以转化成乘积需要用到一个特殊的方法(以前没用过)
\(ans=a_1a_2\cdots a_k\)
\(ans=10^{\lg ans}=10^{\lg a_1a_2\cdots a_k}\)
\(ans=10^{\lg a_1+\lg a_2+\cdots \lg a_k}\)
这样就将乘法转化成加法了
不过还是遇到一个问题不知道如何解决
这个边的流量如果是浮点数如何解决
…………………………………………
#include<iostream>
#include<cstring>
#include<cstdio>
#include<stack>
#define N 1000005
#define inf 0x3f3f3f3f
using namespace std;
int read(){
int s=0;char ch=getchar();
for(;!isdigit(ch);ch=getchar());
for(;isdigit(ch);s=s*10+ch-'0',ch=getchar());
return s;
}
struct Edge{
int to,nxt,cap;
};
int que[N];
int h,qt;
struct Dinic{
Edge e[N];
bool vis[N];
int tot,s,t,n;
int d[N],cur[N],head[N];
Dinic(){tot=1;}
void add(int u,int v,int f){
e[++tot].to=v;
e[tot].cap=f;
e[tot].nxt=head[u];
head[u]=tot;
e[++tot].to=u;
e[tot].cap=0;
e[tot].nxt=head[v];
head[v]=tot;
}
bool bfs(){
memset(vis,false,sizeof(vis));
for(int i=0;i<=n;++i)cur[i]=head[i];
que[qt=1]=s,h=0;int top,to;d[s]=0;vis[s]=1;
while(h<qt){
top=que[++h];
for(int i=head[top];i;i=e[i].nxt)
if(!vis[e[i].to]&&e[i].cap){
to=e[i].to;que[++qt]=to;
vis[to]=true;d[to]=d[top]+1;
if(to==t)return true;
}
}
return vis[t];
}
int dfs(int x,int fl){
if(x==t)return fl;
int flow=0,f,to;
for(int &i=cur[x];i;i=e[i].nxt){
to=e[i].to;
if(d[to]==d[x]+1&&e[i].cap)
if(f=dfs(to,min(fl,e[i].cap))){
e[i].cap-=f;fl-=f;
e[i^1].cap+=f;flow+=f;
if(fl<=0)break;
}
}
if(fl)d[x]=-1;
return flow;
}
int maxflow(int s,int t){
this->s=s;this->t=t;
int ans=0;
while(bfs())ans+=dfs(s,inf);
return ans;
}
};
int co[N];
int st[N];
double Co[N];
double St[N];
int main(){
Dinic f;
int n,m,k,s,t,a,b,c;
scanf("%d%d%d",&n,&m,&k);
f.n=2+n+m;
for(int i=1;i<=n;++i){
cin>>co[i];
Co[i]=log10(co[i]);
}
for(int i=1;i<=n;++i)
f.add(1,i+1,Co[i]);
for(int j=1;j<=m;++j)
f.add(n+m+2,n+1+i);
for(int i=1;i<=n;++i){
cin>>st[i];
St[i]=log10(st[i]);
}
for(int i=1;i<=k;++i){
cin>>a>>b;
f.add(a,b,inf);
}
cout<<f.maxlflow(1,n+m+2);
return 0;
}