沉迷Link-Cut tree无法自拔之:[BZOJ3514] Codechef MARCH14 GERALD07 加强版

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了沉迷Link-Cut tree无法自拔之:[BZOJ3514] Codechef MARCH14 GERALD07 加强版相关的知识,希望对你有一定的参考价值。

来自蒟蒻 \(Hero \_of \_Someone\)\(LCT\) 学习笔记
$
$
又是一道骚题......
先讲一个结论:
假设我们用 \(LCT\) 来做这道题, 在插入边 \(i\) 的时候如果遇到了环, 则将环上最早加入的那条边删掉, 并插入边 \(i\),
\(cnm [i]\) 为被删除边的编号, 如果插入边 \(i\) 时没有遇到环, 则记 \(cnm[i]=0\).
那么, 每一个询问的答案即为, \(n\ -\ [l,r]中小于\ l\ 的\ cnm[i]\ 的个数\).
$
$
证明:
假设加入边 \(i\) 后形成的的环上没有 \(i\)\(cnm[i]\) 这两条边, 那么这个环将变成两个连通块,
而在加入 \(i\)\(cnm[i]<l\) (即在该询问中, \(cnm[i]\) 并不存在于图中)时, 这两个连通块变成了一个连通块, 即连通块数量 \(-1\) ,
所以 \([l,r]\) 中小于 \(l\)\(cnm[i]\) 的个数即为减少的连通块数量, 得证.
$
$
所以这道题的做法就出来了, 用 \(LCT\) 来求 \(cnm[]\) , 主席树或者树套树维护 \([l,r]\) 中小于 \(l\)\(cnm[i]\) 的个数
$
$

//made by Hero_of_Someone
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define N (400010)
#define RG register
using namespace std;
inline int gi(){ RG int x=0,q=1; RG char ch=getchar(); while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
  if(ch=='-') q=-1,ch=getchar(); while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=getchar(); return q*x; }
void File(){freopen(".in","r",stdin);freopen(".out","w",stdout);}

int n,m,k,type,cnm[N];
struct Edge{int u,v;}E[N],e[N];
//------------ lct -----------------------------
int ch[N][2],fa[N],rev[N];
int val[N],Min[N];

inline void cur(int x,int y){ val[x]=Min[x]=y; }

inline void up(int x){
  Min[x]=min(Min[ch[x][0]],Min[ch[x][1]]);
  Min[x]=min(Min[x],val[x]);
}

inline void reverse(int x){
  if(!x) return ;
  swap(ch[x][0],ch[x][1]);
  rev[x]^=1;
}

inline void down(int x){
  if(!rev[x]) return ;
  reverse(ch[x][0]);
  reverse(ch[x][1]);
  rev[x]=0;
}

inline bool is_root(int x){ return ch[fa[x]][0]!=x && x!=ch[fa[x]][1]; }

inline bool lr(int x){ return x==ch[fa[x]][1]; }

inline void rotate(int x){
  RG int y=fa[x],z=fa[y],k=lr(x);
  if(!is_root(y)) ch[z][lr(y)]=x;
  fa[x]=z; fa[ch[x][k^1]]=y; fa[y]=x;
  ch[y][k]=ch[x][k^1]; ch[x][k^1]=y;
  up(y); up(x);
}

int st[N];
inline void splay(int x){
  RG int y=x,top=0;
  while(1){
    st[++top]=y;
    if(is_root(y)) break;
    y=fa[y];
  }
  for(RG int i=top;i;i--) down(st[i]);
  while(!is_root(x)){
    if(!is_root(fa[x])) rotate(lr(x)^lr(fa[x])?x:fa[x]);
    rotate(x);
  }
}

inline void access(int x){
  RG int y=0;
  while(x){ splay(x);
    ch[x][1]=y; fa[y]=x;
    up(x); y=x; x=fa[x];
  }
}

inline void make_root(int x){
  access(x); splay(x); reverse(x);
}

inline int query(int x,int y){
  make_root(x); access(y); splay(y);
  return Min[y];
}

inline int find(int x){
  while(fa[x]) x=fa[x];
  return x;
}

inline void link(int x,int y){
  if(find(x)==find(y)) return ;
  make_root(x); fa[x]=y;
}

inline void cut(int x,int y){
  make_root(x); access(y); splay(y);
  if(ch[y][0]==x) y=0,fa[x]=0,up(y);
}

inline void Insert(int id){
  RG int x=e[id].u,y=e[id].v;
  if(x==y){ cnm[id]=m+1; return ; }
  if(find(x)==find(y)){
    RG int tmp=query(x,y);
    cnm[id]=tmp;
    cut(e[tmp].u,n+tmp);
    cut(e[tmp].v,n+tmp);
  }
  cur(n+id,id);
  link(x,n+id);
  link(y,n+id);
}

inline void init(){
  n=gi(),m=gi(),k=gi(),type=gi();
  for(RG int i=0;i<=n;i++) cur(i,m+1);
  for(RG int i=1;i<=m;i++){
    e[i].u=gi(),e[i].v=gi();
    Insert(i);
  }
}

//------------ 主席树 --------------------------

int ans,cnt,A[N];
int sz,rt[N],sum[N*20];
int ls[N*20],rs[N*20];
inline void build(int& x,int y,int l,int r,int v){
  x=++sz;
  if(l==r){ sum[x]=sum[y]+1; return ; }
  RG int mid=(l+r)>>1;
  if(v<=A[mid]){ rs[x]=rs[y];
    build(ls[x],ls[y],l,mid,v);
  }
  else{ ls[x]=ls[y];
    build(rs[x],rs[y],mid+1,r,v);
  }
  sum[x]=sum[ls[x]]+sum[rs[x]];
}

inline int query(int x,int y,int l,int r,int v){
  if(l==r){ return A[l]<=v?sum[x]-sum[y]:0; }
  RG int mid=(l+r)>>1,ret=sum[ls[x]]-sum[ls[y]];
  if(v<=A[mid]) return query(ls[x],ls[y],l,mid,v);
  else return query(rs[x],rs[y],mid+1,r,v)+ret;
}

//----------------------------------------------

inline void work(){
  for(RG int i=1;i<=m;i++) A[i]=cnm[i];
  sort(A+1,A+m+1); A[0]=-1;
  for(RG int i=1;i<=m;i++)
    if(A[i]!=A[cnt]) A[++cnt]=A[i];
  if(A[cnt]<m+1) A[++cnt]=m+1;
  for(RG int i=1;i<=m;i++)
    build(rt[i],rt[i-1],1,cnt,cnm[i]);
  while(k--){
    RG int l=gi(),r=gi();
    if(type) l^=ans,r^=ans;
    ans=n-query(rt[r],rt[l-1],1,cnt,l-1);
    printf("%d\n",ans);
  }
}

int main(){ init(); work(); return 0; }

以上是关于沉迷Link-Cut tree无法自拔之:[BZOJ3514] Codechef MARCH14 GERALD07 加强版的主要内容,如果未能解决你的问题,请参考以下文章

沉迷Link-Cut tree无法自拔之:[BZOJ2594][Wc2006]水管局长数据加强版

沉迷Link-Cut tree无法自拔之:[BZOJ3514] Codechef MARCH14 GERALD07 加强版

最近沉迷Redis网络模型,无法自拔!终于知道Redis为啥这么快了

大家沉迷短视频无法自拔?Python爬虫进阶,带你玩转短视频

沉迷虚拟机不可自拔...

LCT一步步地解释Link-cut Tree