The task is simple: given any positive integer N, you are supposed to count the total number of 1‘s in the decimal form of the integers from 1 to N. For example, given N being 12, there are five 1‘s in 1, 10, 11, and 12.
Input Specification:
Each input file contains one test case which gives the positive N (<=230).
Output Specification:
For each test case, print the number of 1‘s in one line.
Sample Input:12Sample Output:
5
如果穷举的话太麻烦了,还要排着计算每个数有几个1。可以假定某一位是1,看一下此时有多少个数满足不超过n,假如32105这个数,假定十位是1,他的高位是321,低位是5,高位肯定不能是321(32110 > 32105),当高位取0-320时,低位可以取0-9,此时是(320 + 1)* 10。接洗下来假设百位是1,百位本来就是1,高位为32,低位为05,高位可以取0-32,高位取0-31时,低位可以取0-9,高位取32时,低位只可以取0-5,所以此时是32 * 100 + 5 + 1。继续假设千位是1,高位和低位都可以尽情取所在范围内的数,即高位取0-3,低位可以取0-999,结果很清楚了已经(3+1)*1000。可见只需要分所假设位是0,1,和其他的情况即可。
代码:
#include <iostream> #include <algorithm> #include <cstdio> #include <set> #include <cstring> using namespace std; int main() { int n; cin>>n; int base = 1; int low,now,high; int ans = 0; while(n/base) { high = n / (base * 10); now = (n / base) % 10; low = n % base; if(now == 0)//now 位 要是1 则high必然要减小1 ans += high * base; else if(now == 1)//now位本来就是1 则high位不变 ans += high * base + low + 1; else//那么low可以取base个 ans += (high + 1) * base; base *= 10; } cout<<ans; }