opencv学习笔记霍夫变换——直线检测

Posted feifanren

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了opencv学习笔记霍夫变换——直线检测相关的知识,希望对你有一定的参考价值。

参考大佬博文:blog.csdn.net/jia20003/article/details/7724530

lps-683.iteye.com/blog/2254368

openCV里有两个函数(比较常用)处理霍夫变换直线检测,有什么区别呢。

      CvHoughLine:是用于标准的霍夫变换方法

      CvHoughLine2:可以使用三种霍夫变换的方法,分别是标准霍夫变换(SHT)、多尺度标准霍夫变换(MSHT)、累计概率霍夫变换(PPHT)。

函数原型:

CvSeq* cvHoughLines2(
CvArr* image,
void* line_storage,
int mehtod,
double rho,
double theta,
int threshold,
double param1 =0,
double param2 =0
);

 

image
输入 8-比特、单通道 (二值) 图像,当用CV_HOUGH_PROBABILISTIC方法检测的时候其内容会被函数改变。
line_storage
检测到的线段存储仓. 可以是内存存储仓 (此种情况下,一个线段序列在存储仓中被创建,并且由函数返回),或者是包含线段参数的特殊类型(见下面)的具有单行/单列的矩阵(CvMat*)。矩阵头为函数所修改,使得它的 cols/rows 将包含一组检测到的线段。如果 line_storage 是矩阵,而实际线段的数目超过矩阵尺寸,那么最大可能数目的线段被返回(线段没有按照长度、可信度或其它指标排序).
method
Hough 变换变量,是下面变量的其中之一:
CV_HOUGH_STANDARD - 传统或标准 Hough 变换. 每一个线段由两个浮点数 (ρ, θ) 表示,其中 ρ 是直线与原点 (0,0) 之间的距离,θ 线段与 x-轴之间的夹角。因此,矩阵类型必须是 CV_32FC2 type.
CV_HOUGH_PROBABILISTIC - 概率 Hough 变换(如果图像包含一些长的线性分割,则效率更高). 它返回线段分割而不是整个线段。每个分割用起点和终点来表示,所以矩阵(或创建的序列)类型是 CV_32SC4.
CV_HOUGH_MULTI_SCALE - 传统 Hough 变换的多尺度变种。线段的编码方式与 CV_HOUGH_STANDARD 的一致。
rho
与像素相关单位的距离精度
theta
弧度测量的角度精度
threshold
阈值参数。如果相应的累计值大于 threshold, 则函数返回这条线段.
param1
第一个方法相关的参数:
对传统 Hough 变换,不使用(0).
对概率 Hough 变换,它是最小线段长度.
多尺度 Hough 变换,它是距离精度 rho 的分母 (大致的距离精度是 rho 而精确的应该是 rho / param1 ).
param2
第二个方法相关参数:
对传统 Hough 变换,不使用 (0).
对概率 Hough 变换,这个参数表示在同一条直线上进行碎线段连接的最大间隔值(gap), 即当同一条直线上的两条碎线段之间的间隔小于param2时,将其合二为一。
对多尺度 Hough 变换,它是角度精度 theta 的分母 (大致的角度精度是 theta 而精确的角度应该是 theta / param2).
 1     #include <highgui.h>  
 2     #include <cv.h>  
 3     #include <math.h>  
 4       
 5     int main(int argc, char** argv)  
 6     {  
 7         IplImage* src;  
 8         src = cvLoadImage( argv[1], 0 ); //加载灰度图  
 9         IplImage* dst = cvCreateImage( cvGetSize( src ), IPL_DEPTH_8U, 1 );  
10         IplImage* color_dst = cvCreateImage( cvGetSize( src ), IPL_DEPTH_8U, 3 );  //创建三通道图像  
11         CvMemStorage* storage = cvCreateMemStorage(0);  
12         CvSeq* lines = 0;  
13         cvCanny( src, dst, 50, 100, 3 );  //首先运行边缘检测,结果以灰度图显示(只有边缘)  
14         cvCvtColor( dst, color_dst, CV_GRAY2BGR ); //色彩空间转换,将dst转换到另外一个色彩空间即3通道图像  
15         lines = cvHoughLines2( dst, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI/180, 80, 30, 10 ); //直接得到直线序列  
16       
17         //循环直线序列  
18         for( int i = 0; i < lines ->total; i++ )  //lines存储的是直线  
19         {  
20             CvPoint* line = ( CvPoint* )cvGetSeqElem( lines, i );  //lines序列里面存储的是像素点坐标  
21             cvLine( color_dst, line[0], line[1], CV_RGB( 0, 255, 0 ) );  //将找到的直线标记为红色  
22             //color_dst是三通道图像用来存直线图像  
23         }  
24         cvNamedWindow( "src", 1 );  
25         cvShowImage( "src", src );  
26         cvNamedWindow( "Hough", 1 );  
27         cvShowImage( "Hough", color_dst );  
28         cvWaitKey(0);  
29       
30         return 0;  
31     }  

 

以上是关于opencv学习笔记霍夫变换——直线检测的主要内容,如果未能解决你的问题,请参考以下文章

Python OpenCV 霍夫(Hough Transform)直线变换检测原理,图像处理第 33 篇博客

pyhton—opencv直线检测(HoughLines)找到最长的一条线

pyhton—opencv直线检测(HoughLines)找到最长的一条线

OpenCV笔记整理霍夫变换

深度学习和目标检测系列教程 20-300:OpenCV与图像处理:霍夫变换技术实现直线检测

深度学习和目标检测系列教程 20-300:OpenCV与图像处理:霍夫变换技术实现直线检测