树套树Day2

Posted 探险家Mr.H

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了树套树Day2相关的知识,希望对你有一定的参考价值。

滚回来更新,,,

在Day1我们学了最基本的线段树套平衡树

Day2开始我们要学习一些黑科技

(所以很大概率会出现Day3 w

1.线段树上的黑科技  

  这一段我们分几项来讲

1.权值线段树

  权值线段树以权值为下标建树(就像求逆序对时用的树状数组),一开始所有节点都为0,通过线段树的区间极值,区间和来表示“这个区间上有多少个数”等信息。

  下面这个代码并没有离散化因为我懒得写↓

技术分享图片
#include <iostream>
#include <cstdio>

using namespace  std;

const int maxn = 100010;

struct Node{
    int l,r;
    long long tot;
} tree[maxn*3];

void build(int l,int r,int o)
{
    tree[o].l=l;
    tree[o].r=r;
    if(tree[o].l==tree[o].r) return ;
    int mid=(tree[o].l+tree[o].r)>>1;
    build(l,mid,o<<1);
    build(mid+1,r,o<<1|1);
}

void push_up(int o)
{
    tree[o].tot=tree[o<<1].tot+tree[o<<1|1].tot;
}

void update(int o,int x)
{
    if(tree[o].l==x && tree[o].l==tree[o].r)
    {
        tree[o].tot++;
        return ;
    }
    int mid=(tree[o].l+tree[o].r)>>1;
    if(x<=mid) update(o<<1,x);
    if(x>mid) update(o<<1|1,x);
    push_up(o);
}

long long getans(int o,int l,int r)
{
    if(tree[o].l>r || tree[o].r<l) return 0;
    if(tree[o].l==l && tree[o].r==r) return tree[o].tot;
    int mid=(tree[o].l+tree[o].r)>>1;
    if(r<=mid) return getans(o<<1,l,r);
    if(l>mid) return getans(o<<1|1,l,r);
    return getans(o<<1,l,mid)+getans(o<<1|1,mid+1,r);
}

int main()
{
    int n;
    scanf("%d",&n);
    build(1,maxn,1);
    long long ans=0;
    for(int i=1;i<=n;i++)
    {
        int x;
        scanf("%d",&x);
        ans+=getans(1,x+1,maxn);
        update(1,x);
    }
    printf("%lld",ans);
}
求逆序对

2.标记永久化

  线段树的pushup和pushdown操作有时候实现代价很大,我们能不能不用这两个东西呢?

  可以。具体做法就是每个节点记一个sum记一个add,

  修改的时候:

  1.当目前询问区间与当前区间完全重合的时候,更新add的值,返回。

  2.在一路下来的时候把所有经过的区间(相当于包含询问区间的区间)的sum加上此次修改所产生的影响 v*(xr-xl+1)。

  (注意完全重合之后就返回了,也就是说下面的部分的影响还没有更新。)

  查询的时候: 

  由于上面的更新没有对下面产生影响,所以我们需要一路累加add,直到目前询问区间与当前区间完全重合的时候,答案为sum+add*区间长度

  注意累加add不用累加上完全重合的区间的add,因为它已经在修改的时候对sum进行更新了

技术分享图片
#include<iostream>
#include<cstdio>
#include<cstring>
#define pos(i,a,b) for(int i=(a);i<=(b);i++)
#define N 201000
using namespace std;
int n,m;
int sum[N*4],add[N*4];
int a[N];
void build(int l,int r,int rt){
    if(l==r){
        sum[rt]=a[l];return;
    }
    int mid=(l+r)>>1;
    build(l,mid,rt<<1);
    build(mid+1,r,rt<<1|1);
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void update(int rt,int l,int r,int v,int xl,int xr){
    sum[rt]+=v*(xr-xl+1);
    if(l==xl&&r==xr){
        add[rt]+=v; return;
    }
    int mid=(l+r)>>1;
    if(xr<=mid)  update(rt<<1,l,mid,v,xl,xr);
    else{
        if(xl>mid)   update(rt<<1|1,mid+1,r,v,xl,xr);
        else update(rt<<1,l,mid,v,xl,mid),update(rt<<1|1,mid+1,r,v,mid+1,xr);
    }
}
int query(int rt,int ad,int l,int r,int xl,int xr){
    if(xl==l&&xr==r){
        return sum[rt]+ad*(xr-xl+1);
    }  
    int mid=(l+r)>>1;
    if(xr<=mid) return query(rt<<1,ad+add[rt],l,mid,xl,xr);
    else{
        if(xl>mid) return query(rt<<1|1,ad+add[rt],mid+1,r,xl,xr);
        else return query(rt<<1,ad+add[rt],l,mid,xl,mid)+query(rt<<1|1,ad+add[rt],mid+1,r,mid+1,xr);
    }
}
int main(){
    scanf("%d%d",&n,&m);
    pos(i,1,n) scanf("%d",&a[i]);
    build(1,n,1);
    pos(i,1,m){
        int opt;scanf("%d",&opt);
        int x,y;scanf("%d%d",&x,&y);
        if(opt==1){
            int k;scanf("%d",&k);
            update(1,1,n,k,x,y);
        }
        else printf("%d\n",query(1,0,1,n,x,y));
    }
    return 0;
}
标记永久化

  这个做法在主席树,树套树中很有用

3.主席树

  又称函数式线段树,具体就是有多个版本的线段树,可以支持“回溯”到之前的某个版本,网上介绍很多,这里不多说了。

2.二维线段树

  也就是线段树套线段树,对于线段树的每个区间维护一个线段树,这样就可以求矩形和/矩形极值了。具体个人有个人的写法。

3.动态开节点

  有的时候有些节点你只是放一个标记在那里,不需要实际操作,你就可以开一个“大节点”表示那一块不用实际操作的节点,当需要操作的时候再从那个“大节点”里搞出几个"小节点"来操作。

  这样可以避免MLE

  具体可以见NOIp2017D2T3列队的平衡树写法,我的blog里应该有

4.怎样的两棵树可以套

  数据结构的嵌套,当你对数据结构掌握得很熟练的时候其实自然就明白了。其实树套树不过是用“内层树”维护“外层树”节点上的信息。(一般“外层树”节点上的信息是用数/数组维护的)

  而外层树的结构稳定,不会出现Splay/Treap/AVL这种东西

  而且很多可以顶一层数据结构的东西其实也可以嵌套

  比如CDQ套某某某,替罪羊套某某某


以上是关于树套树Day2的主要内容,如果未能解决你的问题,请参考以下文章

「luogu3380」模板二逼平衡树(树套树)

「模板」 树套树

树套树三题 题解

模板二逼平衡树(树套树)

P3380 模板二逼平衡树(树套树)

[BZOJ 720][JZYZOJ 2016]gty的妹子树 强制在线 树分块/树套树