ZOJ3551Bloodsucker (数学期望)

Posted ---学习ing---

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ZOJ3551Bloodsucker (数学期望)相关的知识,希望对你有一定的参考价值。

In 0th day, there are n-1 people and 1 bloodsucker. Every day, two and only two of them meet. Nothing will happen if they are of the same species, that is, a people meets a people or a bloodsucker meets a bloodsucker. Otherwise, people may be transformed into bloodsucker with probability p. Sooner or later(D days), all people will be turned into bloodsucker. Calculate the mathematical expectation of D.

Input

The number of test cases (TT ≤ 100) is given in the first line of the input. Each case consists of an integer n and a float number p (1 ≤ n < 100000, 0 < p ≤ 1, accurate to 3 digits after decimal point), separated by spaces.

Output

For each case, you should output the expectation(3 digits after the decimal point) in a single line.

Sample Input

1
2 1

Sample Output

1.000

 题意:

开始有一个吸血鬼,n-1个平民百姓。每天一个百姓被感染的概率可求,问每个人都变成吸血鬼的天数期望。

思路:

一般期望题逆推,设dp[i]是目前已经有i个吸血鬼,所有人变成吸血鬼的期望。则dp[n]=0;答案是dp[1]。每一个dp[i]的感染概率可求是p[]=2.0*(n-i)*i/(n-1)/n*p; 

则可得递推公式: dp[i] = (dp[i+1]*p[]+1)/p[];  

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
double dp[100010],p,tmp;
int main()
{
    int T,n,i;
    scanf("%d",&T);
    while(T--){
        scanf("%d%lf",&n,&p);
        dp[n]=0;
        for(i=n-1;i>=1;i--) {
            tmp=2.0*(n-i)*i/(n-1)/n*p; 
            dp[i] = (dp[i+1]*tmp+1)/tmp;  
        }
        printf("%.3lf\n",dp[1]);
    }
    return 0;
}

 

以上是关于ZOJ3551Bloodsucker (数学期望)的主要内容,如果未能解决你的问题,请参考以下文章

B - Problem Arrangement ZOJ - 3777

zoj 2949 - Coins of Luck

zoj-3329-期望/dp/方程优化

概率dp——逆推期望+循环迭代zoj3329

ZOJ3415 Zhou Yu(期望推式子)

ZOJ 3329 Problem Set (期望dp)