keras 与tensorflow 混合使用
Posted 突然想起她的名字
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了keras 与tensorflow 混合使用相关的知识,希望对你有一定的参考价值。
keras 与tensorflow 混合使用
keras 与tensorflow 混合使用
最近tensorflow更新了新版本,到1.4了。做了许多更新,当然重要的是增加了tf.keras. 毕竟keras对于模型搭建的方便大家都是有目共睹的。
喜欢keras风格的模型搭建而不喜欢tensorflow的方式。
但是个人觉得tensorflow的对于loss function定义的灵活性,还是非常便捷的,所以秉承着将二者的优势放在一起的想法,研究了一下如何混合的过程。
众所周知,keras搭建模型有两种方式,Sequential 和 function(?)这两种方式,而函数式搭建每一层返回的都是tensor结果,这就和tensorflow里面的对上了。所以做了如下初探:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# build module
img = tf.placeholder(tf.float32, shape=(None, 784))
labels = tf.placeholder(tf.float32, shape=(None, 10))
x = tf.keras.layers.Dense(128, activation=‘relu‘)(img)
x = tf.keras.layers.Dense(128, activation=‘relu‘)(x)
prediction = tf.keras.layers.Dense(10, activation=‘softmax‘)(x)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=prediction, labels=labels))
train_optim = tf.train.AdamOptimizer().minimize(loss)
mnist_data = input_data.read_data_sets(‘MNIST_data/‘, one_hot=True)
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for _ in range(1000):
batch_x, batch_y = mnist_data.train.next_batch(50)
sess.run(train_optim, feed_dict={img: batch_x, labels: batch_y})
acc_pred = tf.keras.metrics.categorical_accuracy(labels, prediction)
pred = sess.run(acc_pred, feed_dict={labels: mnist_data.test.labels, img: mnist_data.test.images})
print(‘accuracy: %.3f‘ % (sum(pred)/len(mnist_data.test.labels)))
以上是关于keras 与tensorflow 混合使用的主要内容,如果未能解决你的问题,请参考以下文章
当在 tensorflow 1.14 中使用混合精度训练时,张量对象在 keras vgg16 中没有属性“is_initialized”
TF 2.3 中的错误。当混合 Eager 和 non-Eager Keras 模型时
如何在 tensorflow 2.0 w/keras 中保存/恢复大型模型?