epoll完整例子
Posted wywdahai
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了epoll完整例子相关的知识,希望对你有一定的参考价值。
#include <deque> #include <map> #include <vector> #include <pthread.h> #include <semaphore.h> #include <time.h> #include <sys/time.h> #include <sys/shm.h> #include <errno.h> #include <sys/types.h> #include <fcntl.h> #include <stdio.h> #include <string> #include <cstdio> #include <unistd.h> #include <signal.h> #include <sys/types.h> #include <sys/stat.h> #include <cstdlib> #include <cctype> #include <sstream> #include <utility> #include <stdexcept> #include <sys/socket.h> #include <sys/epoll.h> #include <netinet/in.h> #include <arpa/inet.h> #include <iostream> #include <signal.h> using namespace std; #pragma pack(1) //管道消息结构 struct pipemsg { int op; int fd; unsigned int ip; unsigned short port; }; //地址端口结构 struct ipport { unsigned int ip; unsigned short port; bool operator < (const ipport rhs) const {return (ip < rhs.ip || (ip == rhs.ip && port < rhs.port));} bool operator == (const ipport rhs) const {return (ip == rhs.ip && port == rhs.port);} }; //对应于对方地址端口的连接信息 struct peerinfo { int fd; //对应连接句柄 unsigned int contime; //最后连接时间 unsigned int rcvtime; //收到数据时间 unsigned int rcvbyte; //收到字节个数 unsigned int sndtime; //发送数据时间 unsigned int sndbyte; //发送字节个数 }; //连接结构 struct conninfo { int rfd; //管道读端 int wfd; //管道写端 map<struct ipport, struct peerinfo> peer; //对方信息 }; #pragma pack() //全局运行标志 bool g_bRun; //全局连接信息 struct conninfo g_ConnInfo; void setnonblocking(int sock) { int opts; opts = fcntl(sock,F_GETFL); if (opts < 0) { perror("fcntl(sock,GETFL)"); exit(1); } opts = opts|O_NONBLOCK; if (fcntl(sock, F_SETFL, opts) < 0) { perror("fcntl(sock,SETFL,opts)"); exit(1); } } void setreuseaddr(int sock) { int opt; opt = 1; if (setsockopt(sock,SOL_SOCKET,SO_REUSEADDR,&opt,sizeof(&opt)) < 0) { perror("setsockopt"); exit(1); } } static void sig_pro(int signum) { cout << "sig_pro, recv signal:" << signum << endl; if (signum == SIGQUIT) { g_bRun = false; } } //接收连接线程 void * AcceptThread(void *arg) { cout << "AcceptThread, enter" << endl; int ret; //临时变量,存放返回值 int epfd; //监听用的epoll int listenfd; //监听socket int connfd; //接收到的连接socket临时变量 int i; //临时变量,轮询数组用 int nfds; //临时变量,有多少个socket有事件 struct epoll_event ev; //事件临时变量 const int MAXEVENTS = 1024; //最大事件数 struct epoll_event events[MAXEVENTS]; //监听事件数组 socklen_t clilen; //声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件 struct sockaddr_in cliaddr; struct sockaddr_in svraddr; unsigned short uListenPort = 5000; int iBacklogSize = 5; int iBackStoreSize = 1024; struct pipemsg msg; //消息队列数据 //创建epoll,对2.6.8以后的版本,其参数无效,只要大于0的数值就行,内核自己动态分配 epfd = epoll_create(iBackStoreSize); if (epfd < 0) { cout << "AcceptThread, epoll_create fail:" << epfd << ",errno:" << errno << endl; return NULL; } //创建监听socket listenfd = socket(AF_INET, SOCK_STREAM, 0); if (listenfd < 0) { cout << "AcceptThread, socket fail:" << epfd << ",errno:" << errno << endl; close(epfd); return NULL; } //把监听socket设置为非阻塞方式 setnonblocking(listenfd); //设置监听socket为端口重用 setreuseaddr(listenfd); //设置与要处理的事件相关的文件描述符 ev.data.fd = listenfd; //设置要处理的事件类型 ev.events = EPOLLIN|EPOLLET; //注册epoll事件 ret = epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev); if (ret != 0) { cout << "AcceptThread, epoll_ctl fail:" << ret << ",errno:" << errno << endl; close(listenfd); close(epfd); return NULL; } bzero(&svraddr, sizeof(svraddr)); svraddr.sin_family = AF_INET; svraddr.sin_addr.s_addr = htonl(INADDR_ANY); svraddr.sin_port=htons(uListenPort); bind(listenfd,(sockaddr *)&svraddr, sizeof(svraddr)); //监听,准备接收连接 ret = listen(listenfd, iBacklogSize); if (ret != 0) { cout << "AcceptThread, listen fail:" << ret << ",errno:" << errno << endl; close(listenfd); close(epfd); return NULL; } while (g_bRun) { //等待epoll事件的发生,如果当前有信号的句柄数大于输出事件数组的最大大小,超过部分会在下次epoll_wait时输出,事件不会丢 nfds = epoll_wait(epfd, events, MAXEVENTS, 500); //处理所发生的所有事件 for (i = 0; i < nfds && g_bRun; ++i) { if (events[i].data.fd == listenfd) //是本监听socket上的事件 { cout << "AcceptThread, events:" << events[i].events << ",errno:" << errno << endl; if (events[i].events&EPOLLIN) //有连接到来 { do { clilen = sizeof(struct sockaddr); connfd = accept(listenfd,(sockaddr *)&cliaddr, &clilen); if (connfd > 0) { cout << "AcceptThread, accept:" << connfd << ",errno:" << errno << ",connect:" << inet_ntoa(cliaddr.sin_addr) << ":" << ntohs(cliaddr.sin_port) << endl; //往管道写数据 msg.op = 1; msg.fd = connfd; msg.ip = cliaddr.sin_addr.s_addr; msg.port = cliaddr.sin_port; ret = write(g_ConnInfo.wfd, &msg, 14); if (ret != 14) { cout << "AcceptThread, write fail:" << ret << ",errno:" << errno << endl; close(connfd); } } else { cout << "AcceptThread, accept:" << connfd << ",errno:" << errno << endl; if (errno == EAGAIN) //没有连接需要接收了 { break; } else if (errno == EINTR) //可能被中断信号打断,,经过验证对非阻塞socket并未收到此错误,应该可以省掉该步判断 { ; } else //其它情况可以认为该描述字出现错误,应该关闭后重新监听 { //此时说明该描述字已经出错了,需要重新创建和监听 close(listenfd); epoll_ctl(epfd, EPOLL_CTL_DEL, listenfd, &ev); //创建监听socket listenfd = socket(AF_INET, SOCK_STREAM, 0); if (listenfd < 0) { cout << "AcceptThread, socket fail:" << epfd << ",errno:" << errno << endl; close(epfd); return NULL; } //把监听socket设置为非阻塞方式 setnonblocking(listenfd); //设置监听socket为端口重用 setreuseaddr(listenfd); //设置与要处理的事件相关的文件描述符 ev.data.fd = listenfd; //设置要处理的事件类型 ev.events = EPOLLIN|EPOLLET; //注册epoll事件 ret = epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev); if (ret != 0) { cout << "AcceptThread, epoll_ctl fail:" << ret << ",errno:" << errno << endl; close(listenfd); close(epfd); return NULL; } bzero(&svraddr, sizeof(svraddr)); svraddr.sin_family = AF_INET; svraddr.sin_addr.s_addr = htonl(INADDR_ANY); svraddr.sin_port=htons(uListenPort); bind(listenfd,(sockaddr *)&svraddr, sizeof(svraddr)); //监听,准备接收连接 ret = listen(listenfd, iBacklogSize); if (ret != 0) { cout << "AcceptThread, listen fail:" << ret << ",errno:" << errno << endl; close(listenfd); close(epfd); return NULL; } } } } while (g_bRun); } else if (events[i].events&EPOLLERR || events[i].events&EPOLLHUP) //有异常发生 { //此时说明该描述字已经出错了,需要重新创建和监听 close(listenfd); epoll_ctl(epfd, EPOLL_CTL_DEL, listenfd, &ev); //创建监听socket listenfd = socket(AF_INET, SOCK_STREAM, 0); if (listenfd < 0) { cout << "AcceptThread, socket fail:" << epfd << ",errno:" << errno << endl; close(epfd); return NULL; } //把监听socket设置为非阻塞方式 setnonblocking(listenfd); //设置监听socket为端口重用 setreuseaddr(listenfd); //设置与要处理的事件相关的文件描述符 ev.data.fd = listenfd; //设置要处理的事件类型 ev.events = EPOLLIN|EPOLLET; //注册epoll事件 ret = epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev); if (ret != 0) { cout << "AcceptThread, epoll_ctl fail:" << ret << ",errno:" << errno << endl; close(listenfd); close(epfd); return NULL; } bzero(&svraddr, sizeof(svraddr)); svraddr.sin_family = AF_INET; svraddr.sin_addr.s_addr = htonl(INADDR_ANY); svraddr.sin_port=htons(uListenPort); bind(listenfd,(sockaddr *)&svraddr, sizeof(svraddr)); //监听,准备接收连接 ret = listen(listenfd, iBacklogSize); if (ret != 0) { cout << "AcceptThread, listen fail:" << ret << ",errno:" << errno << endl; close(listenfd); close(epfd); return NULL; } } } } } //关闭监听描述字 if (listenfd > 0) { close(listenfd); } //关闭创建的epoll if (epfd > 0) { close(epfd); } cout << "AcceptThread, exit" << endl; return NULL; } //读数据线程 void * ReadThread(void *arg) { cout << "ReadThread, enter" << endl; int ret; //临时变量,存放返回值 int epfd; //连接用的epoll int i; //临时变量,轮询数组用 int nfds; //临时变量,有多少个socket有事件 struct epoll_event ev; //事件临时变量 const int MAXEVENTS = 1024; //最大事件数 struct epoll_event events[MAXEVENTS]; //监听事件数组 int iBackStoreSize = 1024; const int MAXBUFSIZE = 8192; //读数据缓冲区大小 char buf[MAXBUFSIZE]; int nread; //读到的字节数 struct ipport tIpPort; //地址端口信息 struct peerinfo tPeerInfo; //对方连接信息 map<int, struct ipport> mIpPort; //socket对应的对方地址端口信息 map<int, struct ipport>::iterator itIpPort; //临时迭代子 map<struct ipport, struct peerinfo>::iterator itPeerInfo; //临时迭代子 struct pipemsg msg; //消息队列数据 //创建epoll,对2.6.8以后的版本,其参数无效,只要大于0的数值就行,内核自己动态分配 epfd = epoll_create(iBackStoreSize); if (epfd < 0) { cout << "ReadThread, epoll_create fail:" << epfd << ",errno:" << errno << endl; return NULL; } while (g_bRun) { //从管道读数据 do { ret = read(g_ConnInfo.rfd, &msg, 14); if (ret > 0) { //队列中的fd必须是有效的 if (ret == 14 && msg.fd > 0) { if (msg.op == 1) //收到新的连接 { cout << "ReadThread, recv connect:" << msg.fd << ",errno:" << errno << endl; //把socket设置为非阻塞方式 setnonblocking(msg.fd); //设置描述符信息和数组下标信息 ev.data.fd = msg.fd; //设置用于注测的读操作事件 ev.events = EPOLLIN|EPOLLET; //注册ev ret = epoll_ctl(epfd, EPOLL_CTL_ADD, msg.fd, &ev); if (ret != 0) { cout << "ReadThread, epoll_ctl fail:" << ret << ",errno:" << errno << endl; close(msg.fd); } else { mIpPort[msg.fd] = tIpPort; tPeerInfo.fd = msg.fd; tPeerInfo.contime = time(NULL); tPeerInfo.rcvtime = 0; tPeerInfo.rcvbyte = 0; tPeerInfo.sndtime = 0; tPeerInfo.sndbyte = 0; g_ConnInfo.peer[tIpPort] = tPeerInfo; } } else if (msg.op == 2) //断开某个连接 { cout << "ReadThread, recv close:" << msg.fd << ",errno:" << errno << endl; close(msg.fd); epoll_ctl(epfd, EPOLL_CTL_DEL, msg.fd, &ev); itIpPort = mIpPort.find(msg.fd); if (itIpPort != mIpPort.end()) { mIpPort.erase(itIpPort); itPeerInfo = g_ConnInfo.peer.find(itIpPort->second); if (itPeerInfo != g_ConnInfo.peer.end()) { g_ConnInfo.peer.erase(itPeerInfo); } } } } } else { break; } } while(g_bRun); //等待epoll事件的发生,如果当前有信号的句柄数大于输出事件数组的最大大小,超过部分会在下次epoll_wait时输出,事件不会丢 nfds = epoll_wait(epfd, events, MAXEVENTS, 500); //处理所发生的所有事件 for (i = 0; i < nfds && g_bRun; ++i) { cout << "ReadThread, events:" << events[i].events << ",errno:" << errno << endl; if (events[i].events&EPOLLIN) //有数据可读 { do { bzero(buf, MAXBUFSIZE); nread = read(events[i].data.fd, buf, MAXBUFSIZE); if (nread > 0) //读到数据 { cout << "ReadThread, read:" << nread << ",errno:" << errno << endl; itIpPort = mIpPort.find(events[i].data.fd); if (itIpPort != mIpPort.end()) { itPeerInfo = g_ConnInfo.peer.find(itIpPort->second); if (itPeerInfo != g_ConnInfo.peer.end()) { itPeerInfo->second.rcvtime = time(NULL); itPeerInfo->second.rcvbyte += nread; } } } else if (nread < 0) //读取失败 { if (errno == EAGAIN) //没有数据了 { cout << "ReadThread, read:" << nread << ",errno:" << errno << ",no data" << endl; break; } else if(errno == EINTR) //可能被内部中断信号打断,经过验证对非阻塞socket并未收到此错误,应该可以省掉该步判断 { cout << "ReadThread, read:" << nread << ",errno:" << errno << ",interrupt" << endl; } else //客户端主动关闭 { cout << "ReadThread, read:" << nread << ",errno:" << errno << ",peer error" << endl; close(events[i].data.fd); epoll_ctl(epfd, EPOLL_CTL_DEL, events[i].data.fd, &ev); itIpPort = mIpPort.find(events[i].data.fd); if (itIpPort != mIpPort.end()) { mIpPort.erase(itIpPort); itPeerInfo = g_ConnInfo.peer.find(itIpPort->second); if (itPeerInfo != g_ConnInfo.peer.end()) { g_ConnInfo.peer.erase(itPeerInfo); } } break; } } else if (nread == 0) //客户端主动关闭 { cout << "ReadThread, read:" << nread << ",errno:" << errno << ",peer close" << endl; close(events[i].data.fd); epoll_ctl(epfd, EPOLL_CTL_DEL, events[i].data.fd, &ev); itIpPort = mIpPort.find(events[i].data.fd); if (itIpPort != mIpPort.end()) { mIpPort.erase(itIpPort); itPeerInfo = g_ConnInfo.peer.find(itIpPort->second); if (itPeerInfo != g_ConnInfo.peer.end()) { g_ConnInfo.peer.erase(itPeerInfo); } } break; } } while (g_bRun); } else if (events[i].events&EPOLLERR || events[i].events&EPOLLHUP) //有异常发生 { cout << "ReadThread, read:" << nread << ",errno:" << errno << ",err or hup" << endl; close(events[i].data.fd); epoll_ctl(epfd, EPOLL_CTL_DEL, events[i].data.fd, &ev); itIpPort = mIpPort.find(events[i].data.fd); if (itIpPort != mIpPort.end()) { mIpPort.erase(itIpPort); itPeerInfo = g_ConnInfo.peer.find(itIpPort->second); if (itPeerInfo != g_ConnInfo.peer.end()) { g_ConnInfo.peer.erase(itPeerInfo); } } } } } //关闭所有连接 for (itIpPort = mIpPort.begin(); itIpPort != mIpPort.end(); itIpPort++) { if (itIpPort->first > 0) { close(itIpPort->first); } } //关闭创建的epoll if (epfd > 0) { close(epfd); } cout << "ReadThread, exit" << endl; return NULL; } int main(int argc, char* argv[]) { int ret; int fd[2]; //读写管道 pthread_t iAcceptThreadId; //接收连接线程ID pthread_t iReadThreadId; //读数据线程ID //为让应用程序不必对慢速系统调用的errno做EINTR检查,可以采取两种方式:1.屏蔽中断信号,2.处理中断信号 //1.由signal()函数安装的信号处理程序,系统默认会自动重启动被中断的系统调用,而不是让它出错返回, // 所以应用程序不必对慢速系统调用的errno做EINTR检查,这就是自动重启动机制. //2.对sigaction()的默认动作是不自动重启动被中断的系统调用, // 因此如果我们在使用sigaction()时需要自动重启动被中断的系统调用,就需要使用sigaction的SA_RESTART选项 //忽略信号 //sigset_t newmask; //sigemptyset(&newmask); //sigaddset(&newmask, SIGINT); //sigaddset(&newmask, SIGUSR1); //sigaddset(&newmask, SIGUSR2); //sigaddset(&newmask, SIGQUIT); //pthread_sigmask(SIG_BLOCK, &newmask, NULL); //处理信号 //默认自动重启动被中断的系统调用,而不是让它出错返回,应用程序不必对慢速系统调用的errno做EINTR检查 //signal(SIGINT, sig_pro); //signal(SIGUSR1, sig_pro); //signal(SIGUSR2, sig_pro); //signal(SIGQUIT, sig_pro); struct sigaction sa; sa.sa_flags = SA_RESTART; sa.sa_handler = sig_pro; sigaction(SIGINT, &sa, NULL); sigaction(SIGUSR1, &sa, NULL); sigaction(SIGUSR2, &sa, NULL); sigaction(SIGQUIT, &sa, NULL); //设置为运行状态 g_bRun = true; //创建管道 ret = pipe(fd); if (ret < 0) { cout << "main, pipe fail:" << ret << ",errno:" << errno << endl; g_bRun = false; return 0; } g_ConnInfo.rfd = fd[0]; g_ConnInfo.wfd = fd[1]; //读端设置为非阻塞方式 setnonblocking(g_ConnInfo.rfd); //创建线程时采用的参数 pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); //设置绑定的线程,以获取较高的响应速度 //pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); //设置分离的线程 //创建接收连接线程 ret = pthread_create(&iAcceptThreadId, &attr, AcceptThread, NULL); if( ret != 0) { cout << "main, pthread_create AcceptThread fail:" << ret << ",errno:" << errno << endl; g_bRun = false; close(g_ConnInfo.rfd); close(g_ConnInfo.wfd); return 0; } //创建接收连接线程 ret = pthread_create(&iReadThreadId, &attr, ReadThread, NULL); if( ret != 0以上是关于epoll完整例子的主要内容,如果未能解决你的问题,请参考以下文章VSCode自定义代码片段15——git命令操作一个完整流程