机器学习实战之SVM原理与案例
Posted 脑机接口社区
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习实战之SVM原理与案例相关的知识,希望对你有一定的参考价值。
定义:
支持向量机SVM(Support vector machine)是一种二值分类器方法,其基本是思想是:找到一个能够将两类分开的线性可分的直线(或者超平面)。实际上有许多条直线(或超平面)可以将两类目标分开来,我们要找的其实是这些直线(或超平面)中分割两类目标时,有最大距离的直线(或超平面)。我们称这样的直线或超平面为最佳线性分类器。如下图:
源码如下:
#引入库 import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops #创建图 sess = tf.Session() #加载数据 iris = datasets.load_iris() x_vals = np.array([[x[0], x[3]] for x in iris.data]) y_vals = np.array([1 if y == 0 else -1 for y in iris.target]) #分割数据集,80%的数据作为训练集用来训练,剩下20%的数据作为测试集用来做测试 train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False) test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices]
# 声明批量大小 batch_size = 100 # 初始化占位符 x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32) y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # 创建变量 A = tf.Variable(tf.random_normal(shape=[2, 1])) b = tf.Variable(tf.random_normal(shape=[1, 1])) # 构建模型 model_output = tf.subtract(tf.matmul(x_data, A), b) # 采用L2正则式 l2_norm = tf.reduce_sum(tf.square(A)) # 声明alpha参数 alpha = tf.constant([0.01]) term1=tf.subtract(1., tf.multiply(model_output, y_target)) classification_term = tf.reduce_mean(tf.maximum(0., term1)) # 定义损失函数 loss = tf.add(classification_term, tf.multiply(alpha, l2_norm)) # 声明预测函数和准确度函数 prediction = tf.sign(model_output) accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, y_target), tf.float32)) # 声明优化器 my_opt = tf.train.GradientDescentOptimizer(0.01) train_step = my_opt.minimize(loss) # 初始化变量 init = tf.global_variables_initializer() sess.run(init)
#迭代训练 loss_vec = [] train_accuracy = [] test_accuracy = [] for i in range(1000): rand_index = np.random.choice(len(x_vals_train), size=batch_size) rand_x = x_vals_train[rand_index] rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss) train_acc_temp = sess.run(accuracy, feed_dict={ x_data: x_vals_train, y_target: np.transpose([y_vals_train])}) train_accuracy.append(train_acc_temp) test_acc_temp = sess.run(accuracy, feed_dict={ x_data: x_vals_test, y_target: np.transpose([y_vals_test])}) test_accuracy.append(test_acc_temp) # 抽取系数和截距 [[a1], [a2]] = sess.run(A) [[b]] = sess.run(b) slope = -a2/a1 y_intercept = b/a1 x1_vals = [d[1] for d in x_vals] # best_fit = [] for i in x1_vals: best_fit.append(slope*i+y_intercept) setosa_x = [d[1] for i, d in enumerate(x_vals) if y_vals[i] == 1] setosa_y = [d[0] for i, d in enumerate(x_vals) if y_vals[i] == 1] not_setosa_x = [d[1] for i, d in enumerate(x_vals) if y_vals[i] == -1] not_setosa_y = [d[0] for i, d in enumerate(x_vals) if y_vals[i] == -1]
%matplotlib inline # 展示分类结果 plt.plot(setosa_x, setosa_y, \'o\', label=\'得病\') plt.plot(not_setosa_x, not_setosa_y, \'x\', label=\'没得病\') plt.plot(x1_vals, best_fit, \'r-\', label=\'线性分类器\', linewidth=3) plt.ylim([0, 10]) plt.legend(loc=\'lower right\') plt.title(\'细胞大小和细胞颜色深度\') plt.xlabel(\'细胞大小\') plt.ylabel(\'细胞颜色深度\') plt.show() # 展示训练和测试精度 plt.plot(train_accuracy, \'k-\', label=\'训练精度\') plt.plot(test_accuracy, \'r--\', label=\'测试精度\') plt.title(\'训练集和测试集精度\') plt.xlabel(\'迭代次数\') plt.ylabel(\'精度\') plt.legend(loc=\'lower right\') plt.show() # 损失函数效果 plt.plot(loss_vec, \'k-\') plt.title(\'损失误差/迭代次数\') plt.xlabel(\'迭代次数\') plt.ylabel(\'损失误差\') plt.show()
分类结果展示:
精度效果:
损失误差:
更多干货请关注:
以上是关于机器学习实战之SVM原理与案例的主要内容,如果未能解决你的问题,请参考以下文章
机器学习实战应用案例100篇(二十三)-粒子群算法从原理到实战应用案例
FPGA教程案例94机器学习1——基于FPGA的SVM支持向量机二分类系统实现之理论和MATLAB仿真