51nod 1290 Counting Diff Pairs | 莫队 树状数组
题面
一个长度为N的正整数数组A,给出一个数K以及Q个查询,每个查询包含2个数l和r,对于每个查询输出从A[i]到A[j]中,有多少对数,abs(A[i] - A[j]) <= K(abs表示绝对值)。
题解
莫队!//其实我就是搜索“51nod + 莫队”找到的这道题……
七级算法题!
一道320分!
你值得拥有!
题解就是……用个普通的莫队,加上树状数组来统计符合条件的数个数,就好啦。
当增加/删除一个数的时候,统计能和它组成合法数对的数的个数,然后对答案进行相应的增/减。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < \'0\' || c > \'9\')
if(c == \'-\') op = 1;
x = c - \'0\';
while(c = getchar(), c >= \'0\' && c <= \'9\')
x = x * 10 + c - \'0\';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar(\'-\'), x = -x;
if(x >= 10) write(x / 10);
putchar(\'0\' + x % 10);
}
#define space putchar(\' \')
#define enter putchar(\'\\n\')
const int N = 50005, B = 233;
int n, d, m, a[N], lst[N], idx, tol[N], tor[N], tr[N], pl = 1, pr;
ll res, ans[N];
#define bel(x) (((x) - 1) / B + 1)
struct query {
int id, l, r;
bool operator < (const query &b) const {
return bel(l) == bel(b.l) ? r < b.r : l < b.l;
}
} q[N];
void init(){
sort(lst + 1, lst + n + 1);
idx = unique(lst + 1, lst + n + 1) - lst - 1;
for(int i = 1; i <= n; i++)
a[i] = lower_bound(lst + 1, lst + idx + 1, a[i]) - lst;
int l = 1, r = 1;
for(int i = 1; i <= idx; i++){
while(l < i && lst[i] - lst[l] > d) l++;
while(r < idx && lst[r + 1] - lst[i] <= d) r++;
tol[i] = l, tor[i] = r;
}
}
void add(int p, int x){
while(p <= idx) tr[p] += x, p += p & -p;
}
int ask(int p){
int res = 0;
while(p) res += tr[p], p -= p & -p;
return res;
}
int getres(int x){
return ask(tor[x]) - ask(tol[x] - 1);
}
int main(){
read(n), read(d), read(m);
for(int i = 1; i <= n; i++)
read(a[i]), lst[i] = a[i];
init();
for(int i = 1; i <= m; i++)
q[i].id = i, read(q[i].l), q[i].l++, read(q[i].r), q[i].r++;
sort(q + 1, q + m + 1);
for(int i = 1; i <= m; i++){
while(pl > q[i].l) res += getres(a[--pl]), add(a[pl], 1);
while(pr < q[i].r) res += getres(a[++pr]), add(a[pr], 1);
while(pl < q[i].l) add(a[pl], -1), res -= getres(a[pl++]);
while(pr > q[i].r) add(a[pr], -1), res -= getres(a[pr--]);
ans[q[i].id] = res;
}
for(int i = 1; i <= m; i++)
write(ans[i]), enter;
return 0;
}