BP网络中的反向传播

Posted Exploring...

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BP网络中的反向传播相关的知识,希望对你有一定的参考价值。

本文的主要参考:How the backpropagation algorithm works

下面是BP网络的参数结构示意图

首先定义第l层网络第j个神经元的输出(activation)

为了表示简便,令

则有alj=σ(zlj),其中σ是激活函数

定义网络的cost function,其中的n是训练样本的个数。

下面主要介绍使用反向传播来求取cost function相对于权重wij和偏置项bij的导数。

显然,当输入已知时,cost function只是权值w和偏置项b的函数。这里为了方便推倒,首先计算出∂C/∂zlj,令

由于alj=σ(zlj),所以显然有

式中的L表示最后一层网络,即输出层。如果只考虑一个训练样本,则cost function可表示为

如果将输出层的所有输出看成一个列向量,则δjL可以写成下式,Θ表示向量的点乘

下面最关键的问题来了,如何同过δl+1求取δl。这里就用到了∂C/∂zlj这一重要的中间表达,推倒过程如下

 

因此,最终有

写成向量的形式为

利用与上面类似的推倒,可以得到

 

将上面重要的公式用矩阵乘法形式再表达一遍

 

式中Σ\'(zL)是主对角线上的元素为σ\'(zLj)的对角矩阵。求取了cost function相对于权重wij和偏置项bij的导数之后,便可以使用一些基于梯度的优化算法对网络的权值进行更新。下面是一个2输入2输出的一个BP网络的代码示例,实现的是对输入的每个元素进行逻辑取反操作。

  1 import numpy as np
  2 
  3 def tanh(x):
  4     return np.tanh(x)
  5 
  6 def tanh_prime(x):
  7     x = np.tanh(x)
  8     return 1.0 - x ** 2
  9 
 10 class Network(object):
 11 
 12     def __init__(self, sizes):
 13         self.num_layers = len(sizes)
 14         self.sizes = sizes
 15         # self.biases is a column vector
 16         # self.weights\' structure is the same as in the book: http://neuralnetworksanddeeplearning.com/chap2.html
 17         self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
 18         self.weights = [np.random.randn(y, x)
 19                         for x, y in zip(sizes[:-1], sizes[1:])]
 20 
 21     def feedforward(self, a):
 22         """Return the output of the network if "a" is input."""
 23         for b, w in zip(self.biases, self.weights):
 24             a = sigmoid(np.dot(w, a) + b)
 25         return a
 26 
 27     def update_mini_batch(self, mini_batch, learning_rate = 0.2):
 28         """Update the network\'s weights and biases by applying
 29         gradient descent using backpropagation to a single mini batch.
 30         The "mini_batch" is a list of tuples "(x, y)"."""
 31         nabla_b = [np.zeros(b.shape) for b in self.biases]
 32         nabla_w = [np.zeros(w.shape) for w in self.weights]
 33         
 34         # delta_nabla_b is dC/db, delta_nabla_w is dC/dw
 35         for x, y in mini_batch:
 36             delta_nabla_b, delta_nabla_w = self.backprop(x, y)
 37             nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
 38             nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
 39         self.weights = [w - (learning_rate/len(mini_batch)) * nw
 40                         for w, nw in zip(self.weights, nabla_w)]
 41         self.biases = [b - (learning_rate/len(mini_batch)) * nb
 42                        for b, nb in zip(self.biases, nabla_b)]
 43 
 44     def backprop(self, x, y):
 45         """Return a tuple ``(nabla_b, nabla_w)`` representing the
 46         gradient for the cost function C_x.  ``nabla_b`` and
 47         ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
 48         to ``self.biases`` and ``self.weights``."""
 49         nabla_b = [np.zeros(b.shape) for b in self.biases]
 50         nabla_w = [np.zeros(w.shape) for w in self.weights]
 51         
 52         # feedforward
 53         activation = x
 54         activations = [x]   # list to store all the activations, layer by layer
 55         zs = []             # list to store all the z vectors, layer by layer
 56         
 57         # After this loop, activations = [a0, a1, ..., aL], zs = [z1, z2, ..., zL]
 58         for b, w in zip(self.biases, self.weights):
 59             z = np.dot(w, activation) + b
 60             zs.append(z)
 61             activation = sigmoid(z)
 62             activations.append(activation)
 63         
 64         # backward pass
 65         # delta = deltaL .* sigma\'(zL)
 66         delta = self.cost_derivative(activations[-1], y) * \\
 67                 sigmoid_prime(zs[-1])
 68         
 69         # dC/dbL = delta
 70         # dC/dwL = deltaL * a(L-1)^T
 71         nabla_b[-1] = delta
 72         nabla_w[-1] = np.dot(delta, activations[-2].transpose())
 73 
 74         \'\'\'Note that the variable l in the loop below is used a little
 75         differently to the notation in Chapter 2 of the book. Here,
 76         l = 1 means the last layer of neurons, l = 2 is the
 77         second-last layer, and so on. It\'s a renumbering of the
 78         scheme in the book, used here to take advantage of the fact
 79         that Python can use negative indices in lists.\'\'\'
 80         # z = z(L-l+1), here, l start from 2, end with self.num_layers-1, namely, L-1
 81         # delta = delta(L-l+1) = w(L-l+2)^T * delta(L-l+2) .* z(L-l+1)
 82         # nabla_b[L-l+1] = delta(L-l+1)
 83         # nabla_w[L-l+1] = delta(L-l+1) * a(L-l)^T
 84         for l in xrange(2, self.num_layers):
 85             z = zs[-l]
 86             sp = sigmoid_prime(z)
 87             delta = np.dot(self.weights[-l + 1].transpose(), delta) * sp
 88             nabla_b[-l] = delta
 89             nabla_w[-l] = np.dot(delta, activations[-l - 1].transpose())
 90         return (nabla_b, nabla_w)
 91 
 92     def evaluate(self, test_data):
 93         """Return the number of test inputs for which the neural
 94         network outputs the correct result. Note that the neural
 95         network\'s output is assumed to be the index of whichever
 96         neuron in the final layer has the highest activation."""
 97         test_results = self.feedforward(test_data)
 98         return test_results
 99 
100     def cost_derivative(self, output_activations, y):
101         return (output_activations - y)
102 
103 #### Miscellaneous functions
104 def sigmoid(z):
105     return 1.0/(1.0 + np.exp(-z))
106 
107 # derivative of the sigmoid function
108 def sigmoid_prime(z):
109     return sigmoid(z) * (1 - sigmoid(z))
110 
111 if __name__ == \'__main__\':
112 
113     nn = Network([2, 2, 2])
114 
115     X = np.array([[0, 0],
116                   [0, 1],
117                   [1, 0],
118                   [1, 1]])
119 
120     y = np.array([[1, 1],
121                   [1, 0],
122                   [0, 1],
123                   [0, 0]])
124     
125     for k in range(40000):
126         if k % 10000 == 0:
127             print \'epochs:\', k
128         # Randomly select a sample.
129         i = np.random.randint(X.shape[0])
130         nn.update_mini_batch(zip([np.atleast_2d(X[i]).T], [np.atleast_2d(y[i]).T]))
131 
132     for e in X:
133         print(e, nn.evaluate(np.atleast_2d(e).T))
View Code

运行结果

epochs: 0
epochs: 10000
epochs: 20000
epochs: 30000
(array([0, 0]), array([[ 0.98389328],
       [ 0.97490859]]))
(array([0, 1]), array([[ 0.97694707],
       [ 0.01646559]]))
(array([1, 0]), array([[ 0.03149928],
       [ 0.97737158]]))
(array([1, 1]), array([[ 0.01347963],
       [ 0.02383405]]))

 

以上是关于BP网络中的反向传播的主要内容,如果未能解决你的问题,请参考以下文章

读懂反向传播算法(bp算法)

如何理解神经网络里面的反向传播算法

bp算法在人工神经网络中的作用是啥?

深度学习基础--神经网络--BP反向传播算法

神经网络-反向传播BP算法推导

反向传播神经网络(BP)