爬虫性能分析

Posted 宁信

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了爬虫性能分析相关的知识,希望对你有一定的参考价值。

对于爬虫,python进行并发抓取的实现方式主要有以下几种:进程,线程,协程。

性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢。

一 多进程执行

可以实现并发,但是,请求发送出去后和返回之前,中间时期进程空闲

编写方式:
1- 多进程直接返回处理

 1 from concurrent.futures import ProcessPoolExecutor
 2 import requests
 3 import time
 4 
 5 def task(url):
 6     response = requests.get(url)
 7     print(url,response)
 8     # 写正则表达式
 9     return response
10 
11 pool = ProcessPoolExecutor(7)
12 url_list = [
13     \'http://www.cnblogs.com/wupeiqi\',
14     \'http://huaban.com/favorite/beauty/\',
15     \'http://www.bing.com\',
16     \'http://www.zhihu.com\',
17     \'http://www.sina.com\',
18     \'http://www.baidu.com\',
19     \'http://www.autohome.com.cn\',
20 ]
21 
22 for url in url_list:
23     pool.submit(task,url)
24 
25 pool.shutdown(wait=True)
View Code

2- 多进程通过回调函数处理

 1 from concurrent.futures import ProcessPoolExecutor
 2 import requests
 3 import time
 4 
 5 def task(url):
 6     response = requests.get(url)
 7     return response
 8 
 9 def done(future,*args,**kwargs):
10     response = future.result()
11     print(response.status_code,response.content)
12 
13 pool = ProcessPoolExecutor(7)
14 url_list = [
15     \'http://www.cnblogs.com/wupeiqi\',
16     \'http://huaban.com/favorite/beauty/\',
17     \'http://www.bing.com\',
18     \'http://www.zhihu.com\',
19     \'http://www.sina.com\',
20     \'http://www.baidu.com\',
21     \'http://www.autohome.com.cn\',
22 ]
23 for url in url_list:
24     v = pool.submit(task,url)
25     v.add_done_callback(done)
26 
27 pool.shutdown(wait=True)
View Code

二 多线程执行

爬虫可以实现并发,但是,请求发送出去后和返回之前,中间时期线程空闲。

编写方式:
1 多线程直接返回处理

from concurrent.futures import ThreadPoolExecutor
import requests
import time

def task(url):
    response = requests.get(url)
    print(url,response)
    # 写正则表达式

pool = ThreadPoolExecutor(7)
url_list = [
    \'http://www.cnblogs.com/wupeiqi\',
    \'http://huaban.com/favorite/beauty/\',
    \'http://www.bing.com\',
    \'http://www.zhihu.com\',
    \'http://www.sina.com\',
    \'http://www.baidu.com\',
    \'http://www.autohome.com.cn\',
]
for url in url_list:
    pool.submit(task,url)

pool.shutdown(wait=True)

2 多线程通过回调函数处理

from concurrent.futures import ThreadPoolExecutor
import requests
import time

def task(url):
    """
    下载页面
    :param url:
    :return:
    """
    response = requests.get(url)
    return response

def done(future,*args,**kwargs):
    response = future.result()
    print(response.status_code,response.content)

pool = ThreadPoolExecutor(7)
url_list = [
    \'http://www.cnblogs.com/wupeiqi\',
    \'http://huaban.com/favorite/beauty/\',
    \'http://www.bing.com\',
    \'http://www.zhihu.com\',
    \'http://www.sina.com\',
    \'http://www.baidu.com\',
    \'http://www.autohome.com.cn\',
]
for url in url_list:
    v = pool.submit(task,url)
    v.add_done_callback(done)

pool.shutdown(wait=True)

通过上述代码均可以完成对请求性能的提高,对于多线程和多进行的缺点是在IO阻塞时会造成了线程和进程的浪费

三 异步非阻塞模块

协程(微线程) + 异步IO---> 1个线程发送N个Http请求

import asyncio
@asyncio.coroutine
def task():
    print(\'before...task......\')
    yield from asyncio.sleep(5) # 发送Http请求,支持TCP获取结果..
    print(\'end...task......\')


tasks = [task(), task()]

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
one
 1 import asyncio
 2 @asyncio.coroutine
 3 def task(host, url=\'/\'):
 4     print(\'start\',host,url)
 5     reader, writer = yield from asyncio.open_connection(host, 80)
 6 
 7     request_header_content = "GET %s HTTP/1.0\\r\\nHost: %s\\r\\n\\r\\n" % (url, host,)
 8     request_header_content = bytes(request_header_content, encoding=\'utf-8\')
 9 
10     writer.write(request_header_content)
11     yield from writer.drain()
12     text = yield from reader.read()
13     print(\'end\',host, url, text)
14     writer.close()
15 
16 tasks = [
17     task(\'www.cnblogs.com\', \'/gregoryli/\'),
18     task(\'dig.chouti.com\', \'/pic/show?nid=4073644713430508&lid=10273091\')
19 ]
20 
21 loop = asyncio.get_event_loop()
22 results = loop.run_until_complete(asyncio.gather(*tasks))
23 loop.close()
two
import aiohttp
import asyncio
@asyncio.coroutine
def fetch_async(url):
    print(url)
    response = yield from aiohttp.request(\'GET\', url)
    print(url, response)
    response.close()

tasks = [fetch_async(\'http://www.baidu.com/\'), fetch_async(\'http://www.chouti.com/\')]

event_loop = asyncio.get_event_loop()
results = event_loop.run_until_complete(asyncio.gather(*tasks))
event_loop.close()
aiohttp
 1 # -*- coding: utf-8 -*-
 2 # 2017/11/17 14:04
 3 import asyncio
 4 import requests
 5 
 6 @asyncio.coroutine
 7 def task(func, *args):
 8     print(func,args)
 9     loop = asyncio.get_event_loop()
10     future = loop.run_in_executor(None, func, *args) # requests.get(\'http://www.cnblogs.com/wupeiqi/\')
11     response = yield from future
12     print(response.url, response.content)
13 
14 tasks = [
15     task(requests.get, \'http://www.cnblogs.com/gregoryli/\'),
16     task(requests.get, \'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091\')
17 ]
18 
19 loop = asyncio.get_event_loop()
20 results = loop.run_until_complete(asyncio.gather(*tasks))
21 loop.close()
requests
import gevent
import requests
from gevent import monkey

monkey.patch_all()

def task(method, url, req_kwargs):
    print(method, url, req_kwargs)
    response = requests.request(method=method, url=url, **req_kwargs)
    print(response.url, response.content)

# ##### 发送请求 #####
# gevent.joinall([
#     gevent.spawn(task, method=\'get\', url=\'https://www.python.org/\', req_kwargs={}),
#     gevent.spawn(task, method=\'get\', url=\'https://www.yahoo.com/\', req_kwargs={}),
#     gevent.spawn(task, method=\'get\', url=\'https://github.com/\', req_kwargs={}),
# ])

# ##### 发送请求(协程池控制最大协程数量) #####
from gevent.pool import Pool
pool = Pool(5)
gevent.joinall([
    pool.spawn(task, method=\'get\', url=\'https://www.python.org/\', req_kwargs={}),
    pool.spawn(task, method=\'get\', url=\'https://www.yahoo.com/\', req_kwargs={}),
    pool.spawn(task, method=\'get\', url=\'https://www.github.com/\', req_kwargs={}),
])
gevent+requests
 1 import grequests
 2 
 3 request_list = [
 4     grequests.get(\'http://httpbin.org/delay/1\', timeout=0.001),
 5     grequests.get(\'http://fakedomain/\'),
 6     grequests.get(\'http://httpbin.org/status/500\')
 7 ]
 8 
 9 # ##### 执行并获取响应列表 #####
10 response_list = grequests.map(request_list,size=5)
11 print(response_list)
grequests
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from twisted.internet import defer
from twisted.web.client import getPage
from twisted.internet import reactor

def one_done(arg):
    print(arg)

def all_done(arg):
    print(\'done\')
    reactor.stop()

@defer.inlineCallbacks
def task(url):
    res = getPage(bytes(url, encoding=\'utf8\')) # 发送Http请求
    res.addCallback(one_done)
    yield res

url_list = [
    \'http://www.cnblogs.com\',
    \'http://www.cnblogs.com\',
    \'http://www.cnblogs.com\',
    \'http://www.cnblogs.com\',
]

defer_list = [] # [特殊,特殊,特殊(已经向url发送请求)]
for url in url_list:
    v = task(url)
    defer_list.append(v)

d = defer.DeferredList(defer_list)
d.addBoth(all_done)
reactor.run() # 死循环,事件循环
twisted
 1 #!/usr/bin/env python
 2 # -*- coding:utf-8 -*-
 3 from tornado.httpclient import AsyncHTTPClient
 4 from tornado.httpclient import HTTPRequest
 5 from tornado import ioloop
 6 
 7 COUNT = 0
 8 def handle_response(response):
 9     global COUNT
10     COUNT -= 1
11     if response.error:
12         print("Error:", response.error)
13     else:
14         print(response.body)
15         # 方法同twisted
16         # ioloop.IOLoop.current().stop()
17 
18     if COUNT == 0:
19         ioloop.IOLoop.current().stop()
20 
21 def func():
22     url_list = [
23         \'http://www.baidu.com\',
24         \'http://www.bing.com\',
25     ]
26     global COUNT
27     COUNT = len(url_list)
28     for url in url_list:
29         print(url)
30         http_client = AsyncHTTPClient()
31         http_client.fetch(HTTPRequest(url), handle_response)
32 
33 ioloop.IOLoop.current().add_callback(func)
34 ioloop.IOLoop.current().start() # 死循环
tornado

- asyncio
- 示例1:asyncio.sleep(5)
- 示例2:自己封装Http数据包
- 示例3:asyncio+aiohttp
aiohttp模块:封装Http数据包 pip3 install aiohttp
- 示例4:asyncio+requests
requests模块:封装Http数据包 pip3 install requests
- gevent,greenlet+异步IO
pip3 install greenlet
pip3 install gevent
- 示例1:gevent+requests
- 示例2:gevent(协程池,最多发多少个请求)+requests
- 示例3:gevent+requests => grequests
pip3 install grequests

效率:gevent > Twisted > Tornado > asyncio

四  socket

1. socket客户端、服务端
连接阻塞
setblocking(0): 无数据(连接无响应;数据未返回)就报错

------》http请求本质:阻塞

sk = socket.socket()
# 1.连接
sk.connect((\'www.baidu.com\',80,)) # IO阻塞
print(\'连接成功了...\')

# 2. 连接成功发送消息
sk.send(b\'GET / HTTP/1.0\\r\\nHost:www.baidu.com\\r\\n\\r\\n\')
# sk.send(b\'POST / HTTP/1.0\\r\\nHost:www.baidu.com\\r\\n\\r\\nk1=v1&k2=v2\')

# 3. 等待着服务端响应
data = sk.recv(8096) # 响应头,响应体,IO阻塞
print(data)

# 关闭连接
sk.close()

2. IO多路复用
客户端:
try:
  socket对象1.connet()
  socket对象2.connet()
  socket对象3.connet()
except Exception as e:
  pass

while True:
r,w,e = select.select([socket对象1,socket对象2,socket对象3,],[socket对象1,socket对象2,socket对象3,],[],0.05)
r = [socket对象1,] # 表示有人给我发送数据
xx = socket对象1.recv()
w = [socket对象1,] # 表示我已经和别人创建连接成功:
socket对象1.send(\'"""GET /index HTTP/1.0\\r\\nHost: baidu.com\\r\\n\\r\\n"""\')

--------->http请求本质:非阻塞

sk = socket.socket()
sk.setblocking(False)
# 1.连接
try:
    sk.connect((\'www.baidu.com\',80,)) # IO阻塞
    print(\'连接成功了...\')
except BlockingIOError as e:
    print(e)
# 2. 连接成功发送消息
sk.send(b\'GET / HTTP/1.0\\r\\nHost:www.baidu.com\\r\\n\\r\\n\')
# sk.send(b\'POST / HTTP/1.0\\r\\nHost:www.baidu.com\\r\\n\\r\\nk1=v1&k2=v2\')

# 3. 等待着服务端响应
data = sk.recv(8096) # IO阻塞
print(data)

# 关闭连接
sk.close()

3. 
class Foo:
·def fileno(self):
·obj = socket()
·return obj.fileno()
r,w,e = select.select([socket对象?,对象?,对象?,Foo()],[],[])
# 对象必须有: fileno方法,并返回一个文件描述符

要点:

a. select内部:对象.fileno()

b. Foo()内部封装socket文件描述符

IO多路复用: r,w,e = while 监听多个socket对象;
异步IO: 非阻塞的socket+IO多路复用
- 非阻塞socket
- select[自己对象],w,r

import socket
import select

class HttpRequest:
    def __init__(self,sk,host,callback):
        self.socket = sk
        self.host = host
        self.callback = callback
    def fileno(self):
        return self.socket.fileno()

class HttpResponse:
    def __init__(self,recv_data):
        self.recv_data = recv_data
        self.header_dict = {}
        self.body = None
        self.initialize()

    def initialize(self):
        headers, body = self.recv_data.split(b\'\\r\\n\\r\\n\', 1)
        self.body = body
        header_list = headers.split(b\'\\r\\n\')
        for h in header_list:
            h_str = str(h,encoding=\'utf-8\')
            v = h_str.split(\':\',1)
            if len(v) == 2:
                self.header_dict[v[0]] = v[1]


class AsyncRequest:
    def __init__(self):
        self.conn = []
        self.connection = [] # 用于检测是否已经连接成功

    def add_request(self,host,callback):
        try:
            sk = socket.socket()
            sk.setblocking(0)#false
            sk.connect((host,80,))
        except BlockingIOError as e:
            pass
        request = HttpRequest(sk,host,callback)
        self.conn.append(request)
        self.connection.append(request)

    def run(self):

        while True:
            rlist,wlist,elist = select.select(self.conn,self.connection,self.conn,0.05)
            for w in wlist:
                print(w.host,\'连接成功...\')
                # 只要能循环到,表示socket和服务器端已经连接成功
                tpl = "GET / HTTP/1.0\\r\\nHost:%s\\r\\n\\r\\n"  %(w.host,)
                w.socket.send(bytes(tpl,encoding=\'utf-8\'))
                self.connection.remove(w)
            for r in rlist:
                # r,是HttpRequest
                recv_data = bytes()
                while True:
                    try:
                        chunck = r.socket.recv(8096)
                        recv_data += chunck
                    except Exception as e:
                        break
                print(r.host,"有数据返回...",recv_data)

                response = HttpResponse(recv_data)
                r.callback(response)
                r.socket.close()
                self.conn.remove(r)
            if len(self.conn) == 0:
                break

def f1(response):
    print(\'保存到文件\',response.header_dict)

def f2(response):
    print(\'保存到数据库\', response.header_dict)

url_list = [
    {\'host\':\'www.baidu.com\',\'callback\': f1},
    {\'host\':\'cn.bing.com\',\'callback\': f2},
    {\'host\':\'www.cnblogs.com\',\'callback\': f2},
]

req = AsyncRequest()
for item in url_list:
    req.add_request(item[\'host\'],item[\'callback\'])

req.run()
View Code

 

以上是关于爬虫性能分析的主要内容,如果未能解决你的问题,请参考以下文章

Python爬虫腾讯视频m3u8格式分析爬取(附源码,高清无水印)

一段Python爬虫代码的分析

Python爬虫--高性能的异步爬虫

爬虫和数据分析那个好

NIH周三讲座视频爬虫

Python练习册 第 0013 题: 用 Python 写一个爬图片的程序,爬 这个链接里的日本妹子图片 :-),(http://tieba.baidu.com/p/2166231880)(代码片段