Spark GraphX 聚合操作
Posted soyosuyang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark GraphX 聚合操作相关的知识,希望对你有一定的参考价值。
package Spark_GraphX import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.graphx._ import org.apache.spark.graphx.util.GraphGenerators /** * 计算每一个用户的追随者数量和追随者的平均年龄 */ object Graphx_聚合操作 { def main(args: Array[String]): Unit = { val conf=new SparkConf().setAppName("聚合操作").setMaster("local[2]") val sc=new SparkContext(conf) //随机生成具有100个顶点的图,图的结构也随机 val graph:Graph[Double,Int]=GraphGenerators.logNormalGraph(sc,numVertices =100).mapVertices((id,_)=>id.toDouble) graph.vertices.foreach(println) graph.edges.foreach(println) val olderFollowers:VertexRDD[(Int,Double)]=graph.aggregateMessages[(Int,Double)]( triplet=>{ if(triplet.srcAttr>triplet.dstAttr){ //如果源顶点的属性大于目的顶点的属性 triplet.sendToDst(1,triplet.srcAttr) //源-->目的 发送个数1 和源顶点的属性 } }, (a,b)=>(a._1+b._1,a._2+b._2) //累加统计结果 ) olderFollowers.values.foreach(println) val avgAgeOfOlderFollowers:VertexRDD[Double]=olderFollowers.mapValues((id,value)=>value match {case (count,totalAge)=>totalAge/count}) println("*********************") avgAgeOfOlderFollowers.foreach(println) } }
(34,34.0) (19,19.0) (52,52.0) (39,39.0) (96,96.0) (81,81.0) (4,4.0) (71,71.0) (16,16.0) (55,55.0) (82,82.0) (29,29.0) (66,66.0) (79,79.0) (28,28.0) (65,65.0) (54,54.0) (11,11.0) (40,40.0) (23,23.0) (6,6.0) (67,67.0) (8,8.0) (69,69.0) (86,86.0) (3,3.0) (58,58.0) (7,7.0) (44,44.0) (85,85.0) (88,88.0) (91,91.0) (60,60.0) (31,31.0) (26,26.0) (87,87.0) (68,68.0) (5,5.0) (2,2.0) Edge(50,1,1) Edge(0,58,1) Edge(50,25,1) Edge(1,4,1) Edge(51,0,1) Edge(1,5,1) Edge(51,1,1) Edge(1,6,1) Edge(51,2,1) Edge(1,10,1) Edge(1,27,1) Edge(1,27,1) Edge(1,29,1) Edge(1,33,1) Edge(1,34,1) Edge(1,37,1) Edge(1,39,1) Edge(1,42,1) Edge(51,8,1) Edge(1,45,1) Edge(51,9,1) Edge(1,46,1) Edge(51,10,1) Edge(1,47,1) Edge(51,13,1) Edge(1,48,1) Edge(51,13,1) Edge(1,48,1) Edge(51,14,1) Edge(5,5,1) Edge(5,10,1) Edge(5,12,1) Edge(5,13,1) Edge(5,13,1) Edge(5,15,1) Edge(5,17,1) Edge(5,17,1) Edge(5,17,1) Edge(5,17,1) Edge(5,20,1) Edge(5,20,1) Edge(5,22,1) ........................... 省略 ........................... 省略 (38,2568.0) (51,2920.0) (30,2155.0) (52,3016.0) (2,196.0) (29,2010.0) (50,2820.0) (8,736.0) (40,2247.0) (17,1567.0) (8,675.0) (16,1329.0) (30,2422.0) (40,2713.0) (43,2699.0) (20,1415.0) (10,873.0) (15,1383.0) (20,1663.0) (39,2124.0) (1,99.0) (39,2440.0) (37,2487.0) (54,3089.0) (13,1080.0) (14,1172.0) (21,1615.0) (30,2079.0) (37,2555.0) (42,2832.0) (12,1036.0) (13,1118.0) (26,1899.0) (11,1067.0) (61,3382.0) (19,1675.0) (6,555.0) (7,667.0) (12,994.0) (14,1204.0) (13,1220.0) (17,1457.0) (46,2838.0) (45,2699.0) (53,2946.0) (63,3344.0) (19,1433.0) (42,2806.0) (22,1582.0) (51,3087.0) (16,1394.0) (10,926.0) (47,2411.0) (27,2185.0) (53,3093.0) (33,2355.0) (8,734.0) (10,930.0) (6,572.0) (19,1476.0) (33,1839.0) (34,2058.0) (6,573.0) (10,837.0) (52,2814.0) (59,3208.0) ********************* (13,57.254901960784316) (19,58.0) (39,69.3103448275862) (81,92.0) (71,84.375) (55,80.73333333333333) (29,62.76744186046512) (79,87.3) (65,83.15) (11,54.46153846153846) (35,67.21621621621621) (57,83.07692307692308) (34,67.57894736842105) (52,71.83333333333333) (96,98.0) (4,56.4) (16,56.175) (82,92.17647058823529) (66,83.0625) (28,67.825) (54,70.75) (80,92.2) (98,99.0) (30,62.56410256410256) (14,57.2037037037037) (50,83.71428571428571) (36,69.3) (24,67.42857142857143) (64,86.0) (92,97.0) (74,88.15789473684211) (90,95.28571428571429) (72,86.0) (70,85.70588235294117) (18,59.977777777777774) (12,53.07936507936508) (38,66.80952380952381) (20,60.529411764705884) (78,90.88888888888889) (10,54.36206896551724) (94,96.85714285714286) (84,94.85714285714286) (56,79.47826086956522) (76,88.25) (22,55.484848484848484) (46,75.97222222222223) (48,70.38095238095238) (32,63.86363636363637) (0,47.06349206349206) (62,88.75) (42,70.54166666666667) (40,71.09677419354838) (6,55.21875) (8,54.638297872340424) (86,92.6) (58,80.92592592592592) (44,71.36363636363636) (88,93.0) (60,77.6842105263158) (26,60.529411764705884) (68,83.7) (2,54.3728813559322) (51,76.9047619047619) (37,69.05405405405405) (75,86.33333333333333) (45,73.03846153846153) (1,55.442622950819676) (89,92.5) (63,82.83333333333333) (83,93.84615384615384) (17,61.69565217391305) (9,55.58490566037736) (49,75.42105263157895) (43,71.9090909090909) (41,74.18518518518519) (61,78.62962962962963) (15,52.0) (21,58.244897959183675) (47,71.15384615384616) (77,88.25) (53,71.9090909090909) (25,62.40384615384615) (95,97.7) (59,85.57142857142857) (73,91.58333333333333) (27,65.77142857142857) (93,96.14285714285714) (33,61.8) (23,58.84) (67,85.14285714285714) (69,87.125) (3,51.297872340425535) (7,58.35849056603774) (85,91.75) (91,95.33333333333333) (31,55.72727272727273) (87,95.5) (5,54.11538461538461)
以上是关于Spark GraphX 聚合操作的主要内容,如果未能解决你的问题,请参考以下文章
Apache Spark 2.2.0 中文文档 - GraphX Programming Guide | ApacheCN