使用dataframe解决spark TopN问题:分组排序取TopN
Posted 世界那么大,我想去看看
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用dataframe解决spark TopN问题:分组排序取TopN相关的知识,希望对你有一定的参考价值。
package com.profile.main
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
import com.profile.tools.{DateTools, JdbcTools, LogTools, SparkTools}
import com.dhd.comment.Constant
import com.profile.comment.Comments
/**
* 测试类 //使用dataframe解决spark TopN问题:分组、排序、取TopN
* @author
* date 2017-09-27 14:55
*/
object Test {
def main(args: Array[String]): Unit = {
val sc=SparkTools.getSparkContext
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
val df = sc.parallelize(Seq(
(0,"cat26",30.9), (0,"cat13",22.1), (0,"cat95",19.6), (0,"cat105",1.3),
(1,"cat67",28.5), (1,"cat4",26.8), (1,"cat13",12.6), (1,"cat23",5.3),
(2,"cat56",39.6), (2,"cat40",29.7), (2,"cat187",27.9), (2,"cat68",9.8),
(3,"cat8",35.6))).toDF("Hour", "Category", "TotalValue")
df.show
/*
+----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
| 0| cat26| 30.9|
| 0| cat13| 22.1|
| 0| cat95| 19.6|
| 0| cat105| 1.3|
| 1| cat67| 28.5|
| 1| cat4| 26.8|
| 1| cat13| 12.6|
| 1| cat23| 5.3|
| 2| cat56| 39.6|
| 2| cat40| 29.7|
| 2| cat187| 27.9|
| 2| cat68| 9.8|
| 3| cat8| 35.6|
+----+--------+----------+
*/
/* val w = Window.partitionBy($"Hour").orderBy($"TotalValue".desc)
//取Top1
val dfTop1 = df.withColumn("rn", rowNumber.over(w)).where($"rn" === 1).drop("rn")
//注意:row_number()在spark1.x版本中为rowNumber(),在2.x版本为row_number()
//取Top3
val dfTop3 = df.withColumn("rn", rowNumber.over(w)).where($"rn" <= 3).drop("rn")
dfTop1.show*/
/*
+----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
| 1| cat67| 28.5|
| 3| cat8| 35.6|
| 2| cat56| 39.6|
| 0| cat26| 30.9|
+----+--------+----------+
*/
// dfTop3.show
/*
+----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
| 1| cat67| 28.5|
| 1| cat4| 26.8|
| 1| cat13| 12.6|
| 3| cat8| 35.6|
| 2| cat56| 39.6|
| 2| cat40| 29.7|
| 2| cat187| 27.9|
| 0| cat26| 30.9|
| 0| cat13| 22.1|
| 0| cat95| 19.6|
+----+--------+----------+
*/
//使用RDD解决spark TopN问题:分组、排序、取TopN
val rdd1 = sc.parallelize(Seq(
(0,"cat26",30.9), (0,"cat13",22.1), (0,"cat95",19.6), (0,"cat105",1.3),
(1,"cat67",28.5), (1,"cat4",26.8), (1,"cat13",12.6), (1,"cat23",5.3),
(2,"cat56",39.6), (2,"cat40",29.7), (2,"cat187",27.9), (2,"cat68",9.8),
(3,"cat8",35.6)))
val rdd2 = rdd1.map(x => (x._1,(x._2, x._3))).groupByKey()
/*
rdd2.collect
res9: Array[(Int, Iterable[(String, Double)])] = Array((0,CompactBuffer((cat26,30.9), (cat13,22.1), (cat95,19.6), (cat105,1.3))),
(1,CompactBuffer((cat67,28.5), (cat4,26.8), (cat13,12.6), (cat23,5.3))),
(2,CompactBuffer((cat56,39.6), (cat40,29.7), (cat187,27.9), (cat68,9.8))),
(3,CompactBuffer((cat8,35.6))))
*/
val N_value = 1 //取前3
val rdd3 = rdd2.map( x => {
val i2 = x._2.toBuffer
val i2_2 = i2.sortBy(_._2)
if (i2_2.length > N_value) i2_2.remove(0, (i2_2.length - N_value))
(x._1, i2_2.toIterable)
})
/*
rdd3.collect
res8: Array[(Int, Iterable[(String, Double)])] = Array((0,ArrayBuffer((cat95,19.6), (cat13,22.1), (cat26,30.9))),
(1,ArrayBuffer((cat13,12.6), (cat4,26.8), (cat67,28.5))),
(2,ArrayBuffer((cat187,27.9), (cat40,29.7), (cat56,39.6))),
(3,ArrayBuffer((cat8,35.6))))
*/
val rdd4 = rdd3.flatMap(x => {
val y = x._2
for (w <- y) yield (x._1, w._1, w._2)
})
rdd4.collect
/*
res3: Array[(Int, String, Double)] = Array((0,cat95,19.6), (0,cat13,22.1), (0,cat26,30.9),
(1,cat13,12.6), (1,cat4,26.8), (1,cat67,28.5),
(2,cat187,27.9), (2,cat40,29.7), (2,cat56,39.6),
(3,cat8,35.6))
*/
rdd4.toDF("Hour", "Category", "TotalValue").show
/* +----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
| 0| cat95| 19.6|
| 0| cat13| 22.1|
| 0| cat26| 30.9|
| 2| cat187| 27.9|
| 2| cat40| 29.7|
| 2| cat56| 39.6|
| 1| cat13| 12.6|
| 1| cat4| 26.8|
| 1| cat67| 28.5|
| 3| cat8| 35.6|
+----+--------+----------+*/
}
}
以上是关于使用dataframe解决spark TopN问题:分组排序取TopN的主要内容,如果未能解决你的问题,请参考以下文章