mapreduce,整合数据字典表
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了mapreduce,整合数据字典表相关的知识,希望对你有一定的参考价值。
这个坑踩了好长。结果却是map方法中的context写错位置,导致错误。
源数据内容。就是想数据表中的第二列替换成字典表中的第二列。即字典表中的红色,换成字典表的蓝色。
//数据表data.txt
//one 1 two qqq
//two 2 two ccc
//字典表zidian.txt
//1 男 1 sex
//2 女 2 sex
//3 未知 0 sex
//4 结婚 1 marry
//5 未婚 2 marry
//6 未知 0 marry
想要的结果就是
男
女
附上代码:
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Cache {
public static class Mapall extends Mapper<Object, Text, Text, Text> {
private Map<String, String> sexMap = new HashMap<String, String>();
private Path[] localFiles;
// 先做分布式缓存处理,将数据换成到内存中
public void setup(Context context) throws IOException {
Configuration conf = context.getConfiguration();
localFiles = DistributedCache.getLocalCacheFiles(conf);
for(int i = 0;i<localFiles.length;i++) {
String a ;
BufferedReader br = new BufferedReader(new FileReader(localFiles[i].toString()));
while ((a = br.readLine()) != null && a.split("\t")[3].equals("sex")) {
//以数据作为key,文字作为value
sexMap.put(a.split("\t")[2], a.split("\t")[1]);
}
br.close();
}
}
@SuppressWarnings("unlikely-arg-type")
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
// 获取sex字段,是1,2这样的数据
String sex = value.toString().split("\t")[1];
// 如果key部分有1,2这种形式,就替换成男、女这样的内容
if (sexMap.keySet().equals(sex)) {
}
context.write(new Text(sexMap.get(sex)), new Text(""));
//就是这里,坑我好久的时间。
}
}
public static class Reduce extends Reducer<Text, Text, Text, Text> {
public void reduce(Text key, Iterator<Text> values, Context context) throws IOException, InterruptedException {
context.write(key, new Text(""));
}
}
public static void main(String[] args)
throws URISyntaxException, IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
DistributedCache.addCacheFile(new URI("hdfs://192.168.20.39:8020/qpf/zidian.txt"), conf);
Job job = Job.getInstance(conf, "get cache file");
job.setJarByClass(Cache.class);
job.setMapperClass(Mapall.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path("hdfs://192.168.20.39:8020/qpf/data.txt"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.20.39:8020/qpf/data_out"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
很简单的一个数据替换的小例子。
本文出自 “白话” 博客,请务必保留此出处http://feature09.blog.51cto.com/12614993/1983555
以上是关于mapreduce,整合数据字典表的主要内容,如果未能解决你的问题,请参考以下文章
[功能集锦] 002 - mysql查询数据库字典+导出+样式一键整合至excel