Apriori concept (antecedent and a consequence module)

Posted 兔子的尾巴_Mini

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Apriori concept (antecedent and a consequence module)相关的知识,希望对你有一定的参考价值。

支持度(概率):关联度 A&B同时发生(support A&&B)

置信度(概率): A 发生B 发生的概率(贝叶斯)(confidence A=>B)P(B|A)

how to achieve Apiori:

1.预值:

最小支持度:

最小置信度:

2.计算;

SUPPORT(A=>B)=SUPPORT_COUNT(A&B)/TOTAL_COUNT(A)

CONFIDENCT(A=>B)=P(B|A)=SUPPORT(A=>B)/SUPPORT(A)

# -*- coding: utf-8 -*-
from __future__ import print_function
import pandas as pd



# 自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
x = list(map(lambda i: sorted(i.split(ms)), x))
l = len(x[0])
r = []
for i in range(len(x)):
for j in range(i, len(x)):
if x[i][:l - 1] == x[j][:l - 1] and x[i][l - 1] != x[j][l - 1]:
r.append(x[i][:l - 1] + sorted([x[j][l - 1], x[i][l - 1]]))
return r


# 寻找关联规则的函数
def find_rule(d, support, confidence, ms=u‘--‘):
result = pd.DataFrame(index=[‘support‘, ‘confidence‘]) # 定义输出结果

support_series = 1.0 * d.sum() / len(d) # 支持度序列
column = list(support_series[support_series > support].index) # 初步根据支持度筛选
k = 0

while len(column) > 1:
k = k + 1
print(u‘\n正在进行第%s次搜索...‘ % k)
column = connect_string(column, ms)
print(u‘数目:%s...‘ % len(column))
sf = lambda i: d[i].prod(axis=1, numeric_only=True) # 新一批支持度的计算函数

# 创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
d_2 = pd.DataFrame(list(map(sf, column)), index=[ms.join(i) for i in column]).T

support_series_2 = 1.0 * d_2[[ms.join(i) for i in column]].sum() / len(d) # 计算连接后的支持度
column = list(support_series_2[support_series_2 > support].index) # 新一轮支持度筛选
support_series = support_series.append(support_series_2)
column2 = []

for i in column: # 遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?
i = i.split(ms)
for j in range(len(i)):
column2.append(i[:j] + i[j + 1:] + i[j:j + 1])

cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) # 定义置信度序列

for i in column2: # 计算置信度序列
cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))] / support_series[ms.join(i[:len(i) - 1])]

for i in cofidence_series[cofidence_series > confidence].index: # 置信度筛选
result[i] = 0.0
result[i][‘confidence‘] = cofidence_series[i]
result[i][‘support‘] = support_series[ms.join(sorted(i.split(ms)))]

result = result.T.sort([‘confidence‘, ‘support‘], ascending=False) # 结果整理,输出
print(u‘\n结果为:‘)
print(result)

return result

 

以上是关于Apriori concept (antecedent and a consequence module)的主要内容,如果未能解决你的问题,请参考以下文章

r apriori算法结果怎么看

如何将值映射到python中的模糊项

Apriori 算法 理论

第九章 数据关联规则分析算法——基于Apriori算法的关联项分析

关联规则中Apriori演算法的一个小问题

关联规则——Apriori算法