BST (Binary Search Tree)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BST (Binary Search Tree)相关的知识,希望对你有一定的参考价值。

鏍囩锛?/p>

If you need to maintain a list of objects that are sorted and unique

& if you need to be able to quickly insert and retrieve objects to and from this list
锛嶏紞 the ideal data structure will be a tree set (or a tree map, if you consider each object a key and associate another object called a value to it).
 
Implementation in Java : TreeSet<T>, TreeMap<K, V>
 
A binary tree is a BST iff, for every node n, in the tree:
  • All keys in n鈥榮 left subtree are less than the key in n, and
  • all keys in n鈥榮 right subtree are greater than the key in n.
 
Insertion - O(log n)
From root all the way to leaf, compare and decide which side to go.
The new node will always a leaf node.
 
Deletion - O(1)-O(log n)
If n has no children, we only have to remove n from the tree. 
If n has a single child, we remove n and connect its parent to its child. 
If n has two children, we need to : 
          Find the smallest node that is larger than n, call it m. 
          Remove m from the tree, Replace the value of n with m.
          (think : m will always have no left child)
 
Retrieval - O(log n)
For BST (binary search trees),
although the average-case times for the lookupinsert, and delete methods are all O(log N), where N is the number of nodes in the tree,
the worst-case time is O(N).
 
We can guarantee O(log N) time for all three methods by using a Balanced Tree -- a tree that always has height O(log N)-- instead of a binary search tree.
 
Balanced Tree — AVL tree, 2-4 tree, red-black tree and B trees
 
"fully populated" means that every internal node has exactly two children, and all terminal nodes are at the same depth. 
 
 1 class BST {
 2     private class Node {
 3         int val;
 4         Node left;
 5         Node right;
 6         
 7         public Node() {}
 8         
 9         public Node(int val) {
10             this.val = val;
11         }
12         
13         public void copy(Node n) {
14             this.val = n.val;
15             this.left = n.left;
16             this.right = n.right;
17         }
18     }
19     
20     public static Node root;
21     
22     // Insert, O(lg n)
23     public void insert(int val) {
24         root = insert(root, val);
25     }
26     
27     private Node insert(Node node, int val) {
28         if (node == null) {
29             node = new Node(val);
30             return node;
31         }
32         
33         if (node.val > val) node.left = insert(node.left, val);
34         if (node.val < val) node.right = insert(node.right, val);
35         
36         return node;
37     }
38     
39     //Search, O(lg n)
40     public Node search(int val) {
41         return search(root, val);
42     }
43     
44     private Node search(Node node, int val) {
45         if (node == null) return null;
46         
47         if (node.val == val) return node;
48         else if (node.val > val) return search(node.left, val);
49         else return search(node.right, val);
50     }
51     
52     //Delete, O(1) - O(lg n)
53     public Node delete(int val) {
54         root = delete(root, val);
55         return root;
56     }
57     
58     private Node delete(Node node, int val) {
59         if (node == null) return null;
60         if (node.val > val) node.left = delete(node.left, val);
61         else if (node.val < val) node.right = delete(node.right, val);
62         
63         else {
64             Node del = new Node();
65             del.copy(node);
66         
67             if (node.left == null) {node.copy(node.right); node.right = null; return node;}
68             if (node.right == null) {node.copy(node.left); node.left = null; return node;}
69         
70             node.copy(min(del.right));
71             node.right = deleteMin(del.right);
72             node.left = del.left;
73         }
74         return node;
75     }
76     
77     private Node min (Node node) {
78         if (node == null || node.left  == null) return node;
79         return min(node.left);
80     }
81     
82     // remove the smallest node and return new root;
83     private Node deleteMin(Node node) {
84         if (node == null) return null;
85         if (node.left == null) {
86             return node.right; // node is deleted
87         }
88         node.left = deleteMin(node.left);
89         return node;
90     }
91 }

 

 
 

以上是关于BST (Binary Search Tree)的主要内容,如果未能解决你的问题,请参考以下文章

[leetcode]98. Validate Binary Search Tree验证BST

501. Find Mode in Binary Search Tree查找BST中的众数

BST的合法性:validate-binary-search-tree

501. Find Mode in Binary Search Tree 查找BST中的众数

501. Find Mode in Binary Search Tree 查找BST中的众数

Binary Search Tree-530. Minimum Absolute Difference in BST