POJ - 1266 -
Posted 吾之奉先
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ - 1266 -相关的知识,希望对你有一定的参考价值。
题目大意:给出一条圆弧上的两个端点A,B,和圆弧上两端点之间的一个点C,现在要用一块各个定点的坐标均为整数的矩形去覆盖这个圆弧,要求最小的矩形面积。
思路:叉积在本体发挥很强大的作用。首先求出三个点所在圆的圆心,也就是三角形的外心,然后判断着个圆上最上,最下,最左,最右四个点是否在该圆弧上,如果在,那么所求矩形的最上,最下,最左,最右边的坐标就是对应的点的坐标,否则,应该有圆弧两端点的坐标的相对大小来确定!
要判断一个点是否在圆弧上,主要用到叉积!把AB连结起来,设待检测的点式P,则如果是p在圆弧上,那么点p和点C在直线AB 的同一侧,否则在异侧,所以可由叉积判断!
#include <iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<stdlib.h> #include<vector> #include<cmath> #include<queue> #include<set> using namespace std; #define N 100000 #define LL long long #define INF 0xfffffff const double eps = 1e-8; const double pi = acos(-1.0); const double inf = ~0u>>2; struct Point { double x,y; Point(double x=0,double y=0):x(x),y(y) {} }p[4]; typedef Point pointt; pointt operator + (Point a,Point b) { return Point(a.x+b.x,a.y+b.y); } pointt operator - (Point a,Point b) { return Point(a.x-b.x,a.y-b.y); } int dcmp(double x) { if(fabs(x)<eps) return 0; else return x<0?-1:1; } struct Circle { Point center; double r; }; double cross(Point a,Point b) { return a.x*b.y-a.y*b.x; } double mul(Point p0,Point p1,Point p2) { return cross(p1-p0,p2-p0); } double dis(Point a) { return a.x*a.x+a.y*a.y; } double area() { return fabs(cross(p[1]-p[3],p[2]-p[3]))/2; } bool seginter(pointt a1,pointt a2,pointt b1,pointt b2) { double c1 = cross(a2-a1,b1-a1),c2 = cross(a2-a1,b2-a1), c3 = cross(b2-b1,a1-b1),c4 = cross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0; } struct Circle Circumcircle() { Circle tmp; double a,b,c,c1,c2; double xa,ya,xb,yb,xc,yc; a = sqrt(dis(p[3]-p[1])); b = sqrt(dis(p[1]-p[2])); c = sqrt(dis(p[2]-p[3])); tmp.r = (a*b*c)/(area()*4.0); xa = p[3].x; ya = p[3].y; xb = p[1].x; yb = p[1].y; xc = p[2].x; yc = p[2].y; c1 = (dis(p[3])-dis(p[1]))/2; c2 = (dis(p[3])-dis(p[2]))/2; tmp.center.x = (c1*(ya-yc)-c2*(ya-yb))/((xa-xb)*(ya-yc)-(xa-xc)*(ya-yb)); tmp.center.y = (c1*(xa-xc)-c2*(xa-xb))/((ya-yb)*(xa-xc)-(ya-yc)*(xa-xb)); return tmp; } int main() { int i; double r; int w0,w1,h0,h1; for(i = 1; i <= 3 ; i++) scanf("%lf%lf",&p[i].x,&p[i].y); Circle cc = Circumcircle(); r = cc.r; Point q[5]; for(i = 1 ;i < 5 ;i++) q[i] = cc.center; q[1].x-=r,q[2].x+=r,q[3].y-=r,q[4].y+=r; if(!seginter(q[1],p[3],p[1],p[2])) w0 = floor(q[1].x+eps); else w0 = floor(min(p[1].x,p[2].x)+eps); if(!seginter(q[2],p[3],p[1],p[2])) w1 = ceil(q[2].x-eps); else w1 = ceil(max(p[1].x,p[2].x)-eps); if(!seginter(q[3],p[3],p[1],p[2])) h0 = floor(q[3].y+eps); else h0 = floor(min(p[1].y,p[2].y)+eps); if(!seginter(q[4],p[3],p[1],p[2])) h1 = ceil(q[4].y-eps); else h1 = ceil(max(p[1].y,p[2].y)-eps); printf("%d\n",(h1-h0)*(w1-w0)); return 0; }
以上是关于POJ - 1266 -的主要内容,如果未能解决你的问题,请参考以下文章