数据结构&算法_堆栈(堆栈)队列链表

Posted hedeyong11

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构&算法_堆栈(堆栈)队列链表相关的知识,希望对你有一定的参考价值。

堆:

①堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:

   ·堆中某个节点的值总是不大于或不小于其父节点的值;

   ·堆总是一棵完全二叉树。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、斐波那契堆等。

②堆是在程序运行时,而不是在程序编译时,申请某个大小的内存空间。即动态分配内存,对其访问和对一般内存的访问没有区别。

③堆是应用程序在运行的时候请求操作系统分配给自己内存,一般是申请/给予的过程。

④堆是指程序运行时申请的动态内存,而栈只是指一种使用堆的方法(即先进后出)。

堆的应用:

#堆排序
def sift(li, left, right):
    i = left
    j = 2 * i + 1
    tmp = li[left]
    while j <= right:
        if j+1 <= right and li[j] < li[j+1]:
            j = j + 1
        if tmp < li[j]:
            li[i] = li[j]
            i = j
            j = 2 * i + 1
        else:
            break
    li[i] = tmp



def heap_sort(li):
    n = len(li)
    for i in range(n//2-1, -1, -1): #建立堆
        sift(li, i, n-1)

    for i in range(n-1, -1, -1):   #挨个出数
        li[0], li[i] = li[i],li[0]
        sift(li, 0, i-1)

li = [6,8,1,9,3,0,7,2,4,5]
heap_sort(li)
print(li)

  

栈:

栈(stack)又名堆栈,一个数据集合,可以理解为只能在一端进行插入或删除操作的列表。其限制是仅允许在表的一端进行插入和删除运算。这一端被称为栈顶,相对地,把另一端称为栈底

②栈就是一个桶,后放进去的先拿出来,它下面本来有的东西要等它出来之后才能出来(先进后出)

③栈(Stack)是操作系统在建立某个进程时或者线程(在支持多线程的操作系统中是线程)为这个线程建立的存储区域,该区域具有FIFO的特性,在编译的时候可以指定需要的Stack的大小。

栈的基本操作:
  进栈(压栈):push
  出栈:pop
  取栈顶:gettop

用python实现堆栈

# 后进先出
class Stack():
    def __init__(self,size):
        self.size=size
        self.stack=[]
        self.top=-1

    def push(self,x):
        if self.isfull():
            raise exception("stack is full")
        else:
            self.stack.append(x)
            self.top=self.top+1

    def pop(self):
        if self.isempty():
            raise exception("stack is empty")
        else:
            self.top=self.top-1
            self.stack.pop()

    def isfull(self):
        return self.top+1 == self.size
    def isempty(self):
        return self.top == \'-1\'
    def showStack(self):
        print(self.stack)

s=Stack(10)
for i in range(5):
    s.push(i)
s.showStack()
for i in range(3):
    s.pop()
s.showStack()

"""
类中有top属性,用来指示栈的存储情况,初始值为1,一旦插入一个元素,其值加1,利用top的值乐意判定栈是空还是满。
执行时先将0,1,2,3,4依次入栈,然后删除栈顶的前三个元素
"""

栈的应用——括号匹配问题

括号匹配问题:给一个字符串,其中包含小括号、中括号、大括号,求该字符串中的括号是否匹配。例如:
()()[]{}    匹配
([{()}])    匹配
[](          不匹配
[(])        不匹配

def kuohao_match(exp):
    stack = []
    di = {\'(\':\')\', \'{\':\'}\', \'[\':\']\'}
    for c in exp:
        if c in {\'(\',\'{\', \'[\'}:
            stack.append(c)
        else:
            if len(stack) == 0:
                return False
            top = stack.pop()
            if di[top] != c:
                return False
    if len(stack) > 0:
        return False
    else:
        return True

print(kuohao_match(\'()[]{([]][]}()\'))
栈的应用——括号匹配问题

栈的应用——迷宫问题

 

\'\'\'
解决思路
在一个迷宫节点(x,y)上,可以进行四个方向的探查:maze[x-1][y], maze[x+1][y], maze[x][y-1], maze[x][y+1]
思路:从一个节点开始,任意找下一个能走的点,当找不到能走的点时,退回上一个点寻找是否有其他方向的点。
方法:创建一个空栈,首先将入口位置进栈。当栈不空时循环:获取栈顶元素,寻找下一个可走的相邻方块,如果找不到可走的相邻方块,说明当前位置是死胡同,进行回溯(就是讲当前位置出栈,看前面的点是否还有别的出路)

\'\'\'

maze = [
    [1,1,1,1,1,1,1,1,1,1],
    [1,0,0,1,0,0,0,1,0,1],
    [1,0,0,1,0,0,0,1,0,1],
    [1,0,0,0,0,1,1,0,0,1],
    [1,0,1,1,1,0,0,0,0,1],
    [1,0,0,0,1,0,0,0,0,1],
    [1,0,1,0,0,0,1,0,0,1],
    [1,0,1,1,1,0,1,1,0,1],
    [1,1,0,0,0,0,0,1,0,1],
    [1,1,1,1,1,1,1,1,1,1]
]

dirs = [lambda x, y: (x + 1, y),
        lambda x, y: (x - 1, y),
        lambda x, y: (x, y - 1),
        lambda x, y: (x, y + 1)]

def mpath(x1, y1, x2, y2):
    stack = []
    stack.append((x1, y1))
    while len(stack) > 0:
        curNode = stack[-1]
        if curNode[0] == x2 and curNode[1] == y2:
            #到达终点
            for p in stack:
                print(p)
            return True
        for dir in dirs:
            nextNode = dir(curNode[0], curNode[1])
            if maze[nextNode[0]][nextNode[1]] == 0:
                #找到了下一个
                stack.append(nextNode)
                maze[nextNode[0]][nextNode[1]] = -1  # 标记为已经走过,防止死循环
                break
        else:#四个方向都没找到
            maze[curNode[0]][curNode[1]] = -1  # 死路一条,下次别走了
            stack.pop() #回溯
    print("没有路")
    return False

mpath(1,1,8,8)
栈的应用__迷宫问题

 

队列

  • 队列(Queue)是一个数据集合,仅允许在列表的一端进行插入,另一端进行删除。
  •   进行插入的一端称为队尾(rear),插入动作称为进队或入队
  •   进行删除的一端称为队头(front),删除动作称为出队
  • 队列的性质:先进先出(First-in, First-out)
  • 双向队列:队列的两端都允许进行进队和出队操作

 

使用方法:from collections import deque
创建队列:queue = deque(li)
进队:append
出队:popleft
双向队列队首进队:appendleft
双向队列队尾进队:pop

 队列的实现原理

 

 

 

 

 

队列的实现原理:环形队列

队列的应用:

\'\'\'
思路:从一个节点开始,寻找所有下面能继续走的点。继续寻找,直到找到出口。
方法:创建一个空队列,将起点位置进队。在队列不为空时循环:出队一次。如果当前位置为出口,则结束算法;否则找出当前方块的4个相邻方块中可走的方块,全部进队。

\'\'\'

from collections import deque

mg = [
    [1,1,1,1,1,1,1,1,1,1],
    [1,0,0,1,0,0,0,1,0,1],
    [1,0,0,1,0,0,0,1,0,1],
    [1,0,0,0,0,1,1,0,0,1],
    [1,0,1,1,1,0,0,0,0,1],
    [1,0,0,0,1,0,0,0,0,1],
    [1,0,1,0,0,0,1,0,0,1],
    [1,0,1,1,1,0,1,1,0,1],
    [1,1,0,0,0,0,0,1,0,1],
    [1,1,1,1,1,1,1,1,1,1]
]

dirs = [lambda x, y: (x + 1, y),
        lambda x, y: (x - 1, y),
        lambda x, y: (x, y - 1),
        lambda x, y: (x, y + 1)]

def print_p(path):
    curNode = path[-1]
    realpath = []
    print(\'迷宫路径为:\')
    while curNode[2] != -1:
        realpath.append(curNode[0:2])
        curNode = path[curNode[2]]
    realpath.append(curNode[0:2])
    realpath.reverse()
    print(realpath)

def mgpath(x1, y1, x2, y2):
    queue = deque()
    path = []
    queue.append((x1, y1, -1))
    mg[x1][y1] = -1
    while len(queue) > 0:
        curNode = queue.popleft()
        path.append(curNode)
        if curNode[0] == x2 and curNode[1] == y2:
            #到达终点
            # for i,j,k in path:
            #     print("(%s,%s) %s"%(i,j,k))
            print_p(path)
            return True
        for dir in dirs:
            nextNode = dir(curNode[0], curNode[1])
            if mg[nextNode[0]][nextNode[1]] == 0:  # 找到下一个方块
                queue.append((nextNode[0], nextNode[1], len(path) - 1))
                mg[nextNode[0]][nextNode[1]] = -1  # 标记为已经走过
    return False


mgpath(1,1,8,8)
队列的应用--队列解决迷宫问题

 

链表

  链表中每一个元素都是一个对象,每个对象称为一个节点,包含有数据域key和指向下一个节点的指针next。通过各个节点之间的相互连接,最终串联成一个链表。

节点的定义:

class Node(object):
    def __init__(self, item):
        self.item = item
        self.next = None

头节点:

链表的遍历:

#遍历链表
def traversal(head):
    curNode = head #临时用指针
    while cueNode is not None:
        print(curNode.data)
        curNode = curNode.Next

  

 

 链表节点的插入和删除

插入:
p.next = curNode.next
curNode.next = p

删除:
p = curNode.next
curNode.next = curNode.next.next
del p

  

建立链表

#头插法:
def createLinkListF(li):
    l = Node()    
    for num in li:      
        s = Node(num)        
        s.next = l.next       
        l.next = s    
    return l

#尾插法
def createLinkListR(li):
    l = Node()
    r = l       #r指向尾节点
    for num in li:
        s = Node(num)
        r.next = s
        r = s

双链表

双链表中每个节点有两个指针:一个指向后面节点、一个指向前面节点。
节点定义:

class Node(object):
    def __init__(self, item=None):
        self.item = item
        self.next = None
        self.prior = None

双链表的插入和删除

#插入:
p.next = curNode.next
curNode.next.prior = p
p.prior = curNode
curNode.next = p

#删除:
p = curNode.next
curNode.next = p.next
p.next.prior = curNode
del p

  

建立双链表

def createLinkListR(li):
    l = Node()
    r = l
    for num in li:
        s = Node(num)
        r.next = s
        s.prior = r
        r = s
    return l, r

  

  

栈与队列的异同

栈(Stack)和队列(Queue)是两种操作受限的线性表。

(线性表:线性表是一种线性结构,它是一个含有n≥0个结点的有限序列,同一个线性表中的数据元素数据类型相同并且满足“一对一”的逻辑关系。

“一对一”的逻辑关系指的是对于其中的结点,有且仅有一个开始结点没有前驱但有一个后继结点,有且仅有一个终端结点没有后继但有一个前驱结点,其它的结点都有且仅有一个前驱和一个后继结点。)

这种受限表现在:栈的插入和删除操作只允许在表的尾端进行(在栈中成为“栈顶”),满足“FIFO:First In Last Out”;队列只允许在表尾插入数据元素,在表头删除数据元素,满足“First In First Out”。

栈与队列的相同点:

1.都是线性结构。

2.插入操作都是限定在表尾进行。

3.都可以通过顺序结构和链式结构实现。、

4.插入与删除的时间复杂度都是O(1),在空间复杂度上两者也一样。

5.多链栈和多链队列的管理模式可以相同。

栈与队列的不同点:

1.删除数据元素的位置不同,栈的删除操作在表尾进行,队列的删除操作在表头进行。

2.应用场景不同;常见栈的应用场景包括括号问题的求解,表达式的转换和求值,函数调用和递归实现,深度优先搜索遍历等;常见的队列的应用场景包括计算机系统中各种资源的管理,消息缓冲器的管理和广度优先搜索遍历等。

3.顺序栈能够实现多栈空间共享,而顺序队列不能。

 

以上是关于数据结构&算法_堆栈(堆栈)队列链表的主要内容,如果未能解决你的问题,请参考以下文章

堆栈二链表实现堆栈

python开发基础:生成式&成员运算&解压法&队列堆栈&数据类型转换

数组链表堆栈和队列

SPL 数据结构1-双向链表,堆栈,队列

python开发基础:三元运算&生成式&成员运算&解压法&队列堆栈&数据类型转换

java:堆栈,队列,枚举,链表