CS229 笔记02

Posted GENKUN

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CS229 笔记02相关的知识,希望对你有一定的参考价值。

CS229 笔记02

公式推导

$ {\rm Let}, A, B, C \in {\rm {R}}^{n \times n}. $

$ \text{Fact.1: If}, a \in {\rm R},, {\rm tr},a=a $

显然。

$\text{Fact.2:}, {\rm{tr}}A={\rm{tr}}A^T $
\[ \begin{eqnarray*} {\rm {tr}}\,A&=&\prod_{i=1}^n{a_{ii}} \\ &=&{\rm {tr}}\,A^T \end{eqnarray*} \]
$\text{Fact.3:},{\rm{tr}},AB={\rm{tr}},BA $
\[ \begin{eqnarray*} {\rm tr}\,AB&=&\prod_{i=1}^n{[AB]_{ii}} \&=&\sum_{k=1}^{n}{a_{ik}\,b_{ki}} \&=&\sum_{k=1}^{n}{b_{ik}\,a_{ki}} \&=&\prod_{i=1}^n{[BA]_{ii}} \&=&{\rm tr}\,BA \\end{eqnarray*} \]
$ \text{Fact.4:},{\rm{tr}},ABC={\rm{tr}},CAB={\rm{tr}},BCA $
\[ \begin{eqnarray*} {\rm tr}\,ABC&=&{\rm tr}\,(AB)C \&=&{\rm tr}\,C(AB) \tag{Fact.3} \&=&{\rm tr}\,A(BC) \&=&{\rm tr}\,(BC)A \tag{Fact.3} \\end{eqnarray*} \]
\(\text{Fact.4:}\, \nabla_A\,{\rm {tr}\, AB}=B^T\)
\[ {\rm {tr}\, AB}=\prod_{i=1}^n{[AB]_{ii}}=\prod_{i=1}^n{\sum_{k=1}^n{a_{ik}\,b_{ki}}} \]

\[ \begin{eqnarray*} \nabla_A\,{\rm {tr}\, AB}&=&\frac{\partial{\rm {tr}\,AB}}{\partial A} \&=&\begin{bmatrix}\frac{\partial\,{\rm {tr}\,AB}}{\partial a_{11}} & \frac{\partial\,{\rm {tr}\,AB}}{\partial a_{12}} & \cdots & \frac{\partial\,{\rm {tr}\,AB}}{\partial a_{1n}} \\ \frac{\partial\,{\rm {tr}\,AB}}{\partial a_{21}} & \frac{\partial\,{\rm {tr}\,AB}}{\partial a_{22}} & \cdots & \frac{\partial\,{\rm {tr}\,AB}}{\partial a_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial\,{\rm {tr}\,AB}}{\partial a_{n1}} & \frac{\partial\,{\rm {tr}\,AB}}{\partial a_{n2}} & \cdots & \frac{\partial\,{\rm {tr}\,AB}}{\partial a_{nn}}\end{bmatrix} \&=&\begin{bmatrix}\frac{\partial\,\prod_{i=1}^n{\sum_{k=1}^n{a_{ik}\,b_{ki}}}}{\partial a_{11}} & \frac{\partial\,\prod_{i=1}^n{\sum_{k=1}^n{a_{ik}\,b_{ki}}}}{\partial a_{12}} & \cdots & \frac{\partial\,\prod_{i=1}^n{\sum_{k=1}^n{a_{ik}\,b_{ki}}}}{\partial a_{1n}} \\ \frac{\partial\,\prod_{i=1}^n{\sum_{k=1}^n{a_{ik}\,b_{ki}}}}{\partial a_{21}} & \frac{\partial\,\prod_{i=1}^n{\sum_{k=1}^n{a_{ik}\,b_{ki}}}}{\partial a_{22}} & \cdots & \frac{\partial\,\prod_{i=1}^n{\sum_{k=1}^n{a_{ik}\,b_{ki}}}}{\partial a_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial\,\prod_{i=1}^n{\sum_{k=1}^n{a_{ik}\,b_{ki}}}}{\partial a_{n1}} & \frac{\partial\,\prod_{i=1}^n{\sum_{k=1}^n{a_{ik}\,b_{ki}}}}{\partial a_{n2}} & \cdots & \frac{\partial\,\prod_{i=1}^n{\sum_{k=1}^n{a_{ik}\,b_{ki}}}}{\partial a_{nn}}\end{bmatrix} \\end{eqnarray*} \]

以上是关于CS229 笔记02的主要内容,如果未能解决你的问题,请参考以下文章

CS229 笔记07

CS229 笔记08

(CS229) 第一课 梯度下降及标准方程推导笔记

CS229 - MachineLearning - 12 强化学习笔记

(CS229) 第二课 梯度下降及标准方程推导笔记

CS229笔记一监督学习,线性回归,LMS算法,正态方程,概率解释和局部加权线性回归