concurrent.futures模块与协程

Posted Sober--

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了concurrent.futures模块与协程相关的知识,希望对你有一定的参考价值。

concurrent.futures  —Launching parallel tasks    concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习的进程池Pool和threadpool模块也可以使用。

对进程池疑惑的可以参阅:32进程池与回调函数http://www.cnblogs.com/liluning/p/7445457.html

对threadpool模块疑惑的可以看我闲暇时写的一段代码:(因为本人也不了解这个模块,代码里写的也是自己想当然的,如有问题请自行查阅资料)

 基于threadpool猫眼爬虫

 

一、concurrent.futures模块

1、官方文档

https://docs.python.org/dev/library/concurrent.futures.html#module-concurrent.futures

2、ProcessPoolExecutor(进程池)与ThreadPoolExecutor(线程池)

(进程池类与线程池类的方法使用等各方面基本相同)

1)导入

from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor

2)创建

p = ProcessPoolExecutor(num)  #创建进程池
t = ThreadPoolExecutor(num)  #创建线程池

3)参数

num:要创建的进程数或线程数,如果省略,进程数将默认使用cpu_count()的值,线程数将默认使用cpu_count()*5的值

4)主要方法

submit(fn, *args, **kwargs):在一个池工作进程中执行执行fn(args kwargs)执行,并返回一个表示可调用的执行的Future对象
map(func, *iterables, timeout=None, chunksize=1):
shutdown(wait=True):执行结束释放资源

3、应用

 1)进程池

复制代码
from concurrent.futures import ProcessPoolExecutor
import os,time
def task(n):
    print(\'%s is running\' %os.getpid())
    time.sleep(2)
    return n**2

if __name__ == \'__main__\':
    p=ProcessPoolExecutor()
    l=[]
    start=time.time()
    for i in range(10):
        obj=p.submit(task,i)
        l.append(obj)
    p.shutdown()
    print(\'=\'*30)
    print([obj for obj in l])
    print([obj.result() for obj in l])
    print(time.time()-start)
复制代码

2)线程池

复制代码
from concurrent.futures import ThreadPoolExecutor
import threading
import os,time
def task(n):
    print(\'%s:%s is running\' %(threading.currentThread().getName(),os.getpid()))
    time.sleep(2)
    return n**2

if __name__ == \'__main__\':
    p=ThreadPoolExecutor()
    l=[]
    start=time.time()
    for i in range(10):
        obj=p.submit(task,i)
        l.append(obj)
    p.shutdown()
    print(\'=\'*30)
    print([obj.result() for obj in l])
    print(time.time()-start)
复制代码

3)同步执行

复制代码
from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
import os,time,random
def task(n):
    print(\'%s is running\' %os.getpid())
    time.sleep(2)
    return n**2

if __name__ == \'__main__\':
    p=ProcessPoolExecutor()
    start=time.time()
    for i in range(10):
        res=p.submit(task,i).result()
        print(res)
    print(\'=\'*30)
    print(time.time()-start)
复制代码

4、回调函数 

不懂回调函数的看本章节首部有链接

复制代码
from concurrent.futures import ThreadPoolExecutor
import requests, os, time
from threading import currentThread
def get_page(url):
    print(\'%s:<%s> is getting [%s]\' %(currentThread().getName(),os.getpid(),url))
    response=requests.get(url)
    time.sleep(2)
    return {\'url\':url,\'text\':response.text}
def parse_page(res):
    res=res.result()  #注意值
    print(\'%s:<%s> parse [%s]\' %(currentThread().getName(),os.getpid(),res[\'url\']))
    with open(\'db.txt\',\'a\') as f:
        parse_res=\'url:%s size:%s\\n\' %(res[\'url\'],len(res[\'text\']))
        f.write(parse_res)
if __name__ == \'__main__\':
    p=ThreadPoolExecutor()
    urls = [
        \'https://www.baidu.com\',
        \'http://www.openstack.org\',
        \'https://www.python.org\',
        \'http://www.sina.com.cn/\'
    ]

    for url in urls:
        p.submit(get_page, url).add_done_callback(parse_page)
        #add_done_callback()回调函数
    p.shutdown()
    print(\'主\',os.getpid())
复制代码

5、map方法

map有疑惑可以阅览:19、内置函数和匿名函数http://www.cnblogs.com/liluning/p/7280832.html

复制代码
from concurrent.futures import ProcessPoolExecutor
import os,time
def task(n):
    print(\'%s is running\' %os.getpid())
    time.sleep(2)
    return n**2

if __name__ == \'__main__\':
    p=ProcessPoolExecutor()
    obj=p.map(task,range(10))
    p.shutdown()
    print(\'=\'*30)
    print(list(obj))
复制代码

 

二、协程概念

1、定义

是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

2、注意

1)python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)

2)单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

3、优点

1) 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级

2) 单线程内就可以实现并发的效果,最大限度地利用cpu

4、缺点

1) 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程

2) 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

5、总结

1)必须在只有一个单线程里实现并发

2)修改共享数据不需加锁

3)用户程序里自己保存多个控制流的上下文栈

附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))


 

三、greenlet模块

如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换

生成器:18、迭代器和生成器http://www.cnblogs.com/liluning/p/7274862.html

1、安装

pip3 install greenlet

2、使用

复制代码
from greenlet import greenlet

def eat(name):
    print(\'%s eat 1\' %name)
    g2.switch(\'egon\')
    print(\'%s eat 2\' %name)
    g2.switch()
def play(name):
    print(\'%s play 1\' %name)
    g1.switch()
    print(\'%s play 2\' %name)

g1=greenlet(eat)
g2=greenlet(play)

g1.switch(\'egon\')#可以在第一次switch时传入参数,以后都不需要
复制代码

3、单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

 View Code

单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。


 

四、Gevent模块

1、安装

pip3 install gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

2、用法

复制代码
g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束

#或者上述两步合作一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值
复制代码

3、遇到IO阻塞时会自动切换任务

 View Code

上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

 View Code

4、Gevent的同步与异步

 View Code

5、Gevent实现爬虫

复制代码
from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time

def get_page(url):
    print(\'GET: %s\' %url)
    response=requests.get(url)
    if response.status_code == 200:
        print(\'%d bytes received from %s\' %(len(response.text),url))

start_time=time.time()
g1=gevent.spawn(get_page, \'https://www.python.org/\')
g2=gevent.spawn(get_page, \'https://www.yahoo.com/\')
g3=gevent.spawn(get_page, \'https://github.com/\')
gevent.joinall([g1,g2,g3])
stop_time=time.time()
print(\'run time is %s\' %(stop_time-start_time))
复制代码

6、gevent实现单线程下的socket并发

通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)

 服务端
 客户端

7、多协程发送多个客户端

 服务端
 客户端

以上是关于concurrent.futures模块与协程的主要内容,如果未能解决你的问题,请参考以下文章

python全栈开发基础第二十六篇(concurrent.futures模块协程GreenletGevent)

Python学习第25篇:concurrent.futures模块(进程池,线程池)

使用concurrent.futures模块并发,实现进程池线程池

Python3模块concurrent.futures模块,线程池进程池

concurrent.futures模块

为啥我不能在类方法中使用 python 模块 concurrent.futures?