连分数理论

Posted Eufisky

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了连分数理论相关的知识,希望对你有一定的参考价值。

1、Euler‘s continued fraction formula

== The original formula ==
[[Euler]] derived the formula as
connecting a finite sum of products with a finite continued fraction.

\[
a_0 + a_0a_1 + a_0a_1a_2 + \cdots + a_0a_1a_2\cdots a_n =
\cfrac{a_0}{1 - \cfrac{a_1}{1 + a_1 - \cfrac{a_2}{1 + a_2 - \cfrac{\ddots}{\ddots
\cfrac{a_{n-1}}{1 + a_{n-1} - \cfrac{a_n}{1 + a_n}}}}}}\,
\]

The identity is easily established by [[mathematical induction|induction]] on ‘‘n‘‘, and is therefore applicable in the limit: if the expression on the left is extended to represent a [[convergent series|convergent infinite series]], the expression on the right can also be extended to represent a convergent infinite continued fraction.

2、Gauss‘s continued fraction

==Derivation==
Let $f_0, f_1, f_2, \dots$ be a sequence of analytic functions so that
\[f_{i-1} - f_i = k_i\,z\,f_{i+1}\]
for all $i > 0$, where each $k_i$ is a constant.

Then
\[\frac{f_{i-1}}{f_i} = 1 + k_i z \frac{f_{i+1}}{{f_i}}, \,\] and so \[\frac{f_i}{f_{i-1}} = \frac{1}{1 + k_i z \frac{f_{i+1}}{{f_i}}}\]

Setting $g_i = f_i / f_{i-1}$,
\[g_i = \frac{1}{1 + k_i z g_{i+1}},\]
So
\[g_1 = \frac{f_1}{f_0} = \cfrac{1}{1 + k_1 z g_2} = \cfrac{1}{1 + \cfrac{k_1 z}{1 + k_2 z g_3}}
= \cfrac{1}{1 + \cfrac{k_1 z}{1 + \cfrac{k_2 z}{1 + k_3 z g_4}}} = \dots\]

Repeating this ad infinitum produces the continued fraction expression
\[\frac{f_1}{f_0} = \cfrac{1}{1 + \cfrac{k_1 z}{1 + \cfrac{k_2 z}{1 + \cfrac{k_3 z}{1 + {}\ddots}}}}\]

In Gauss‘s continued fraction, the functions $f_i$ are hypergeometric functions of the form ${}_0F_1$, ${}_1F_1$, and ${}_2F_1$, and the equations $f_{i-1} - f_i = k_i z f_{i+1}$ arise as identities between functions where the parameters differ by integer amounts. These identities can be proven in several ways, for example by expanding out the series and comparing coefficients, or by taking the derivative in several ways and eliminating it from the equations generated.

以上是关于连分数理论的主要内容,如果未能解决你的问题,请参考以下文章

控制理论的一些资料推荐

PAT甲级题分类汇编——理论

ZZNUOJ_用C语言编写程序实现1220:SO EASY(附完整源码)

Demystify 稳定匹配理论和圈圈图

理论上如何在STM32F3中实现最大采样率?

性能测试总结---基础理论篇