[LintCode] Binary Tree Maximum Path Sum
Posted Push your limit!
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[LintCode] Binary Tree Maximum Path Sum相关的知识,希望对你有一定的参考价值。
Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
Given the below binary tree:
1
/ \\
2 3
return 6
.
Given a binary tree data structure, we should instinctly consider recursion.
The maximum path sum must at least include one node from the input binary tree.
For any node t, we consider it as the root of its subtree. The maximum path sum
either includes the root node t or does not include t. If the max path sum does not
include t, then the max path is either the max path of t\'s left subtree or the max path
of t\'s right subtree. If the max path sum includes t, then the max path contains a
straight path from t\'s left subtree, node t, then a straight path from t\'s right sub tree.
Optimal Substructure:
maxPathSum(t) = Math.max(Math.max(maxPathSum(t.left), maxPathSum(t.right)), //max path sum does not include t
Math.max(left.straightPath, 0) + node.val + Math.max(right.straightPath, 0)); //max path sum includes t
Solution 1. Top down recursively memoization search
From the above formula, we know for a given node, we need its left/right subtrees\' straight paths
and max paths to calculate the max path sum at the given node. Instead of redundantly compute subproblems\'
straight paths and max paths, we can use the same top down memoization search approach as used in House Robber III.
1 /** 2 * Definition of TreeNode: 3 * public class TreeNode { 4 * public int val; 5 * public TreeNode left, right; 6 * public TreeNode(int val) { 7 * this.val = val; 8 * this.left = this.right = null; 9 * } 10 * } 11 */ 12 public class Solution { 13 private class ResultType { 14 protected int singlePath; 15 protected int maxPath; 16 protected ResultType(int singlePath, int maxPath){ 17 this.singlePath = singlePath; 18 this.maxPath = maxPath; 19 } 20 } 21 private ResultType helper(TreeNode node){ 22 if(node == null){ 23 return new ResultType(0, Integer.MIN_VALUE); 24 } 25 26 ResultType left = helper(node.left); 27 ResultType right = helper(node.right); 28 29 int singlePath = Math.max(0, Math.max(left.singlePath, right.singlePath)) + node.val; 30 int maxPathWithOutCurrentNode = Math.max(left.maxPath, right.maxPath); 31 int maxPathWithCurrentNode = Math.max(left.singlePath, 0) + node.val + Math.max(right.singlePath, 0); 32 int maxPath = Math.max(maxPathWithOutCurrentNode, maxPathWithCurrentNode); 33 34 return new ResultType(singlePath, maxPath); 35 } 36 public int maxPathSum(TreeNode root) { 37 ResultType result = helper(root); 38 return result.maxPath; 39 } 40 }
Follow up question: Can you show how solution 1 avoids duplicated computations compared to a brute force recursive solution without memoization?
Solution 2. Brute force recursive approach, TLE
1 public class Solution { 2 public int maxPathSum(TreeNode root) { 3 if(root == null){ 4 return Integer.MIN_VALUE; 5 } 6 int leftMaxPathSum = maxPathSum(root.left); 7 int rightMaxPathSum = maxPathSum(root.right); 8 int maxPathWithOutCurrentNode = Math.max(leftMaxPathSum, rightMaxPathSum); 9 int leftMaxSinglePathSum = maxSinglePathSum(root.left); 10 int rightMaxSinglePathSum = maxSinglePathSum(root.right); 11 int maxPathWithCurrentNode = Math.max(leftMaxSinglePathSum, 0) 12 + root.val 13 + Math.max(rightMaxSinglePathSum, 0); 14 return Math.max(maxPathWithOutCurrentNode, maxPathWithCurrentNode); 15 } 16 private int maxSinglePathSum(TreeNode node){ 17 if(node == null){ 18 return 0; 19 } 20 int leftMaxSinglePathSum = maxSinglePathSum(node.left); 21 int rightMaxSinglePathSum = maxSinglePathSum(node.right); 22 return Math.max(0, Math.max(leftMaxSinglePathSum, rightMaxSinglePathSum)) + node.val; 23 } 24 }
Compare the red highlighted section of both solutions. In the brute force solution, every time we need to calculate the
max single path sum of a given node t, we traverse t\'s left subtree and right subtree. To calculate t.left and t.right\'s
max single path sum, we traverse t.left\'s subtree and t.right\'s subtree, which are also part of t\'s subtree.
If we use memoization and store t.left and t.right\'s max single path sum, we can compute t\'s max single path sum in O(1) time.
If we just use the brute force approach, we compute t\'s max single path sum in O(2^(t\'s height)) time.
Related Problems
以上是关于[LintCode] Binary Tree Maximum Path Sum的主要内容,如果未能解决你的问题,请参考以下文章
lintcode-easy-Invert Binary Tree
lintcode-medium-Balanced Binary Tree
[LintCode] Binary Tree Flipping
lintcode-easy-Binary Tree Paths