[LintCode] Minimum Path Sum
Posted Push your limit!
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[LintCode] Minimum Path Sum相关的知识,希望对你有一定的参考价值。
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
You can only move either down or right at any point in time.
Solution 1. Recursion, DFS
1 public class Solution { 2 private int minPath = Integer.MAX_VALUE; 3 public int minPathSum(int[][] grid) { 4 if(grid == null || grid.length == 0 || grid[0].length == 0){ 5 return -1; 6 } 7 traverse(grid, 0, 0, 0); 8 return minPath; 9 } 10 private void traverse(int[][] grid, int x, int y, int sum){ 11 int m = grid.length, n = grid[0].length; 12 if(x >= m || y >= n) { 13 return; 14 } 15 sum += grid[x][y]; 16 if(x == m - 1 && y == n - 1){ 17 if(sum < minPath){ 18 minPath = sum; 19 } 20 return; 21 } 22 traverse(grid, x + 1, y, sum); 23 traverse(grid, x, y + 1, sum); 24 } 25 }
Solution 2. DFS, divide and conquer + memoization
1 public class Solution { 2 private int[][] hash; 3 public int minPathSum(int[][] grid) { 4 if(grid == null || grid.length == 0 || grid[0].length == 0){ 5 return -1; 6 } 7 hash = new int[grid.length][grid[0].length]; 8 for(int i = 0; i < hash.length; i++){ 9 for(int j = 0; j < hash[0].length; j++){ 10 hash[i][j] = Integer.MAX_VALUE; 11 } 12 } 13 return divideConquer(grid, 0, 0); 14 } 15 private int divideConquer(int[][] grid, int x, int y){ 16 int m = grid.length, n = grid[0].length; 17 if(x == m - 1 && y == n - 1){ 18 return grid[x][y]; 19 } 20 if(x >= m || y >= n){ 21 return Integer.MAX_VALUE; 22 } 23 if(hash[x][y] != Integer.MAX_VALUE){ 24 return hash[x][y]; 25 } 26 hash[x][y] = grid[x][y] + Math.min(divideConquer(grid, x, y + 1), divideConquer(grid, x + 1, y)); 27 return hash[x][y]; 28 } 29 }
Solution 3. Dynamic Programming
State: f[i][j], the min distance from (0, 0) to (i, j)
Function: f[i][j] = grid[i][j] + Math.min(f[i - 1][j], f[i][j - 1])
Initialization: f[i][0] = grid[i][0] + f[i - 1][0]; f[0][j] = grid[0][j] + f[0][j - 1]
Answer: f[m - 1][n - 1]
1 public class Solution { 2 public int minPathSum(int[][] grid) { 3 if(grid == null || grid.length == 0 || grid[0].length == 0){ 4 return -1; 5 } 6 int rowLen = grid.length, colLen = grid[0].length; 7 int[][] f = new int[rowLen][colLen]; 8 f[0][0] = grid[0][0]; 9 for(int row = 1; row < rowLen; row++){ 10 f[row][0] = grid[row][0] + f[row - 1][0]; 11 } 12 for(int col = 1; col < colLen; col++){ 13 f[0][col] = grid[0][col] + f[0][col - 1]; 14 } 15 for(int i = 1; i < rowLen; i++){ 16 for(int j = 1; j < colLen; j++){ 17 f[i][j] = grid[i][j] + Math.min(f[i][j - 1], f[i - 1][j]); 18 } 19 } 20 return f[rowLen - 1][colLen - 1]; 21 } 22 }
Solution 4. DP with space optimization
1 public class Solution { 2 public int minPathSum(int[][] grid) { 3 if(grid == null || grid.length == 0 || grid[0].length == 0){ 4 return -1; 5 } 6 int rowLen = grid.length, colLen = grid[0].length; 7 int[][] T = new int[2][colLen]; 8 T[0][0] = grid[0][0]; 9 for(int j = 1; j < colLen; j++){ 10 T[0][j] = T[0][j - 1] + grid[0][j]; 11 } 12 for(int i = 1; i < rowLen; i++){ 13 T[i % 2][0] = T[(i - 1) % 2][0] + grid[i][0]; 14 for(int j = 1; j < colLen; j++){ 15 T[i % 2][j] = grid[i][j] + Math.min(T[(i - 1) % 2][j], T[i % 2][j - 1]); 16 } 17 } 18 return T[(rowLen - 1) % 2][colLen - 1]; 19 } 20 }
Related Problems
Triangle
Binary Tree Maximum Path Sum
以上是关于[LintCode] Minimum Path Sum的主要内容,如果未能解决你的问题,请参考以下文章
lintcode-medium-Minimum Size Subarray Sum
[LintCode] Minimum Size Subarray Sum 最小子数组和的大小
lintcode160- Find Minimum in Rotated Sorted Array II- medium
Lintcode: Interval Minimum Number