半同步/半异步并发模式进程池实现
Posted gcczhongduan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了半同步/半异步并发模式进程池实现相关的知识,希望对你有一定的参考价值。
半同步/半异步并发模式:父进程监听到新的客户端连接请求后,以通信管道通知进程池中的某一子进程:“嘿,有新的客户连接来了。你去accept。然后处理下!”。从而避免在进程间传递文件描写叙述符。这样的模式中,一个客户连接上的全部任务始终有同一个进程来处理。
详细细节,尽在代码中:
#ifndef PROCESSPOOL_H
#define PROCESSPOOL_H
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/stat.h>
//描写叙述一个子进程的类
class process
{
public:
process() : m_pid( -1 ){}
public:
pid_t m_pid; //子进程pid
int m_pipefd[2];//子进程与父进程通信管道(父进程通过管道通知选定的子进程:“有新的连接到来,你去accept")
};
//进程池类:将须要处理的逻辑任务封装为任务类。作为模板參数,以提高代码复用
template< typename T >
class processpool
{
private:
//构造函数,creat函数调用
processpool( int listenfd, int process_number = 8 );
public:
//给定server监听的socket,和进程数,创建子进程。(注:单例模式)。 为静态函数,因此能够直接以类名调用
static processpool< T >* create( int listenfd, int process_number = 8 )
{
if( !m_instance )//确保仅仅创建唯一的一个进程池实例
{
m_instance = new processpool< T >( listenfd, process_number );
}
return m_instance;
}
~processpool()
{
delete [] m_sub_process;
}
void run(); //启动进程池,在当中依据当前进程的标号来区分为父进程或子进程,并分别调用其run_***函数来处理逻辑任务
private:
void setup_sig_pipe();
void run_parent(); //父进程的逻辑任务处理函数:监听listen socket,并通知工作进程
void run_child(); //子进程的任务逻辑处理函数:接受连接socket,完毕客户任务请求
private:
static const int MAX_PROCESS_NUMBER = 16; //进程池同意的最大进程数量
static const int USER_PER_PROCESS = 65536; //每一个子进程处理的最大的客户任务数量
static const int MAX_EVENT_NUMBER = 10000; // epoll能处理的最大事件数量
int m_process_number; //进程池中的进程数量
int m_idx; //子进程在池中的编号。从0開始
int m_epollfd; //指向poll内核事件表的文件描写叙述符:每一个进程都独立创建一个epoll内核事件表项
int m_listenfd; //监听socket:父进程与全部子进程的监听socket文件描写叙述符指向内核中的同一文件表项
int m_stop; //子进程是否要停止执行
process* m_sub_process; //保存全部子进程的数组
static processpool< T >* m_instance; //进程池静态实例:标识全局唯一的进程池
};
template< typename T >
processpool< T >* processpool< T >::m_instance = NULL;//初始化静态成员
static int sig_pipefd[2];//用于处理信号的管道,以实现统一事件源
//将文件描写叙述符设为非堵塞
static int setnonblocking( int fd )
{
int old_option = fcntl( fd, F_GETFL );
int new_option = old_option | O_NONBLOCK;
fcntl( fd, F_SETFL, new_option );
return old_option;
}
//向epoll内核时间表注冊事件
static void addfd( int epollfd, int fd )
{
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN | EPOLLET;
epoll_ctl( epollfd, EPOLL_CTL_ADD, fd, &event );
setnonblocking( fd );//”仅仅有当事件就绪时,非堵塞才是高校的“
}
//删除fd上的注冊事件
static void removefd( int epollfd, int fd )
{
epoll_ctl( epollfd, EPOLL_CTL_DEL, fd, 0 );
close( fd );
}
//消息处理函数,实现事件统一处理:仅仅是往号管道写端写入信号消息。详细信号处理逻辑在while循环中统一处理。
// 减短信号处理函数执行时间,从而确保信号不被屏蔽(信号在处理期间,系统不会再次出发该信号)
static void sig_handler( int sig )
{
int save_errno = errno;
int msg = sig;
send( sig_pipefd[1], ( char* )&msg, 1, 0 );
errno = save_errno;
}
static void addsig( int sig, void( handler )(int), bool restart = true )
{
struct sigaction sa;
memset( &sa, ‘\0‘, sizeof( sa ) );
sa.sa_handler = handler;
if( restart )
{
sa.sa_flags |= SA_RESTART;
}
sigfillset( &sa.sa_mask );
assert( sigaction( sig, &sa, NULL ) != -1 );
}
//进程池构造函数
template< typename T >
processpool< T >::processpool( int listenfd, int process_number )
: m_listenfd( listenfd ), m_process_number( process_number ), m_idx( -1 ), m_stop( false )
{
assert( ( process_number > 0 ) && ( process_number <= MAX_PROCESS_NUMBER ) );
m_sub_process = new process[ process_number ];
assert( m_sub_process );
for( int i = 0; i < process_number; ++i )
{
int ret = socketpair( PF_UNIX, SOCK_STREAM, 0, m_sub_process[i].m_pipefd );
assert( ret == 0 );
m_sub_process[i].m_pid = fork();
assert( m_sub_process[i].m_pid >= 0 );
if( m_sub_process[i].m_pid > 0 )//为父进程
{
close( m_sub_process[i].m_pipefd[1] );
continue;//父进程继续创建好全部的子进程后,才退出该函数
}
else
{
close( m_sub_process[i].m_pipefd[0] );//子进程
m_idx = i;//初始化子进程在进程池中的编号(最小为0,而父进程标号为-1)
break;//子进程一旦创建好。就退出该函数。进入逻辑任务处理(pool->run)
}
}
}
//信号管道设置函数
template< typename T >
void processpool< T >::setup_sig_pipe()
{
m_epollfd = epoll_create( 5 );
assert( m_epollfd != -1 );
int ret = socketpair( PF_UNIX, SOCK_STREAM, 0, sig_pipefd );
assert( ret != -1 );
setnonblocking( sig_pipefd[1] );//信号处理函数向写端写入消息
addfd( m_epollfd, sig_pipefd[0] );//在while中监听读端
addsig( SIGCHLD, sig_handler );//子进程退出会暂停
addsig( SIGTERM, sig_handler );//终止进程,kill函数默认即发送该信号
addsig( SIGINT, sig_handler );//键盘输入以终止该进程ctrl+C
addsig( SIGPIPE, SIG_IGN );//忽略往管道读端被关闭的管道写数据的信号
}
//进程池启动函数
template< typename T >
void processpool< T >::run()
{
if( m_idx != -1 )
{
run_child();//子进程
return;//子进程退出后,记得return
}
run_parent();//父进程
}
//子进程逻辑函数
template< typename T >
void processpool< T >::run_child()
{
setup_sig_pipe();
int pipefd = m_sub_process[m_idx].m_pipefd[ 1 ];//与父进程的通信管道
addfd( m_epollfd, pipefd );
epoll_event events[ MAX_EVENT_NUMBER ];
T* users = new T [ USER_PER_PROCESS ]; //一次性创建全部的客户端任务对象数组(也用到池的思想,当某个客户任务处理完后,不用释放该对象资源,而是放回池中再利用)
assert( users );
int number = 0;
int ret = -1;
//监听信号管道、通信管道、连接socket,处理逻辑任务
while( ! m_stop )
{
number = epoll_wait( m_epollfd, events, MAX_EVENT_NUMBER, -1 );
if ( ( number < 0 ) && ( errno != EINTR ) )
{
printf( "epoll failure\n" );
break;
}
for ( int i = 0; i < number; i++ )
{
int sockfd = events[i].data.fd;
if( ( sockfd == pipefd ) && ( events[i].events & EPOLLIN ) ) //为父进程的通信事件
{
int client = 0;
ret = recv( sockfd, ( char* )&client, sizeof( client ), 0 );
if( ( ( ret < 0 ) && ( errno != EAGAIN ) ) || ret == 0 )
{
continue;
}
else
{
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof( client_address );
int connfd = accept( m_listenfd, ( struct sockaddr* )&client_address, &client_addrlength );
if ( connfd < 0 )
{
printf( "errno is: %d\n", errno );
continue;
}
addfd( m_epollfd, connfd );
users[connfd].init( m_epollfd, connfd, client_address );
}
}
else if( ( sockfd == sig_pipefd[0] ) && ( events[i].events & EPOLLIN ) )//为信号管道事件
{
int sig;
char signals[1024];
ret = recv( sig_pipefd[0], signals, sizeof( signals ), 0 );
if( ret <= 0 )
{
continue;
}
else
{
for( int i = 0; i < ret; ++i )
{
switch( signals[i] )
{
case SIGCHLD:
{
pid_t pid;
int stat;
while ( ( pid = waitpid( -1, &stat, WNOHANG ) ) > 0 )
{
continue;
}
break;
}
case SIGTERM:
case SIGINT:
{
m_stop = true;
break;
}
default:
{
break;
}
}
}
}
}
else if( events[i].events & EPOLLIN ) //为连接socket事件
{
users[sockfd].process();//客户任务对象的逻辑处理函数
}
else
{
continue;
}
}
}
delete [] users;
users = NULL;
close( pipefd );//关闭与父进程的通信管道的读端
//close( m_listenfd );//”对象由那个函数创建,就由那个函数销毁“
close( m_epollfd );
}
//父进程逻辑函数
template< typename T >
void processpool< T >::run_parent()
{
setup_sig_pipe();
addfd( m_epollfd, m_listenfd );
epoll_event events[ MAX_EVENT_NUMBER ];
int sub_process_counter = 0;
int new_conn = 1;
int number = 0;
int ret = -1;
//监听listen socket、和信号管道
while( ! m_stop )
{
number = epoll_wait( m_epollfd, events, MAX_EVENT_NUMBER, -1 );
if ( ( number < 0 ) && ( errno != EINTR ) )
{
printf( "epoll failure\n" );
break;
}
for ( int i = 0; i < number; i++ )
{
int sockfd = events[i].data.fd;
if( sockfd == m_listenfd ) //监听到新连接到来,论选出一个子进程,通知该子进程”嘿。有新的连接到了。你接受下!“
{
int i = sub_process_counter;
do
{
if( m_sub_process[i].m_pid != -1 )
{
break;
}
i = (i+1)%m_process_number;
}
while( i != sub_process_counter );
if( m_sub_process[i].m_pid == -1 )//全部子进程都都已经推出
{
m_stop = true;
break;
}
sub_process_counter = (i+1)%m_process_number;
//send( m_sub_process[sub_process_counter++].m_pipefd[0], ( char* )&new_conn, sizeof( new_conn ), 0 );
send( m_sub_process[i].m_pipefd[0], ( char* )&new_conn, sizeof( new_conn ), 0 );//通知子进程
printf( "send request to child %d\n", i );
//sub_process_counter %= m_process_number;
}
else if( ( sockfd == sig_pipefd[0] ) && ( events[i].events & EPOLLIN ) )
{
int sig;
char signals[1024];
ret = recv( sig_pipefd[0], signals, sizeof( signals ), 0 );
if( ret <= 0 )
{
continue;
}
else
{
for( int i = 0; i < ret; ++i )
{
switch( signals[i] )
{
case SIGCHLD://子进程退出信号
{
pid_t pid;
int stat;
while ( ( pid = waitpid( -1, &stat, WNOHANG ) ) > 0 )
{
for( int i = 0; i < m_process_number; ++i )
{
if( m_sub_process[i].m_pid == pid )
{
printf( "child %d join\n", i );
close( m_sub_process[i].m_pipefd[0] );
m_sub_process[i].m_pid = -1; //设置已经推出的子进程的PID为-1
}
}
}
m_stop = true;
for( int i = 0; i < m_process_number; ++i )
{
if( m_sub_process[i].m_pid != -1 ) //仅仅要另一个子进程没有退出,则父进程继续
{
m_stop = false;
}
}
break;
}
case SIGTERM:
case SIGINT:
{
printf( "kill all the clild now\n" );
for( int i = 0; i < m_process_number; ++i )
{
int pid = m_sub_process[i].m_pid;
if( pid != -1 )
{
kill( pid, SIGTERM );
}
}
break;
}
default:
{
break;
}
}
}
}
}
else
{
continue;
}
}
}
//close( m_listenfd );
close( m_epollfd );
}
#endif
以上是关于半同步/半异步并发模式进程池实现的主要内容,如果未能解决你的问题,请参考以下文章