UVaLive 3353 Optimal Bus Route Design (最小费用流)
Posted dwtfukgv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UVaLive 3353 Optimal Bus Route Design (最小费用流)相关的知识,希望对你有一定的参考价值。
题意:给定一个 n 个点的有向带权图,让你找若干个圈,使得每个结点恰好属于一个圈,并且总长度尽量小。
析:一开始想的是先缩点,先用DP,来求。。。
题解给的是最小费用流或者是最佳完全匹配,其实都是一样的,因为每个点都只属于一个圈,那么对于每个点的入度和出度都应该是一样的,然后就是把每个点都拆成两个点,然后如果有边相连,就加一条费用该权值,容量为1的边,然后跑一个最小费用流即可,如果满流就是有解,否则就是无解。如果用最佳完全匹配的话,也差不多,每条都有一个后继边,连一条边,然后不存在的用无限大,因为求是最小值,所以取反每个权值,求最佳完全匹配即可。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 200 + 10; const int maxm = 3e5 + 10; const ULL mod = 3; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Edge{ int from, to, cap, flow, cost; }; struct MinCostMaxFlow{ int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; int d[maxn]; int p[maxn]; int a[maxn]; bool inq[maxn]; void init(int n){ this-> n = n; for(int i = 0; i < n; ++i) G[i].cl; edges.cl; } void addEdge(int from, int to, int cap, int cost){ edges.pb((Edge){from, to, cap, 0, cost}); edges.pb((Edge){to, from, 0, 0, -cost}); m = edges.sz; G[from].pb(m - 2); G[to].pb(m - 1); } bool bellman(int &flow, int &cost){ ms(d, INF); d[s] = 0; ms(inq, 0); inq[s] = 1; p[s] = 0; a[s] = INF; queue<int> q; q.push(s); while(!q.empty()){ int u = q.front(); q.pop(); inq[u] = 0; for(int i = 0; i < G[u].sz; ++i){ Edge &e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost){ p[e.to] = G[u][i]; d[e.to] = d[u] + e.cost; a[e.to] = min(a[u], e.cap - e.flow); if(!inq[e.to]){ q.push(e.to); inq[e.to] = 1; } } } } if(d[t] == INF) return false; flow += a[t]; cost += a[t] * d[t]; int u = t; while(u != s){ edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; u = edges[p[u]].from; } return true; } int mincostmaxflow(int s, int t, int &flow){ this-> s = s; this-> t = t; int cost = 0; while(bellman(flow, cost)); return cost; } }; MinCostMaxFlow mcmf; int main(){ while(scanf("%d", &n) == 1 && n){ int s = 0, t = n * 2 + 2; mcmf.init(t + 2); for(int i = 1; i <= n; ++i){ int u, cost; mcmf.addEdge(s, i<<1, 1, 0); mcmf.addEdge(i<<1|1, t, 1, 0); while(scanf("%d", &u) == 1 && u){ scanf("%d", &cost); mcmf.addEdge(i<<1, u<<1|1, 1, cost); } } int flow = 0; int ans = mcmf.mincostmaxflow(s, t, flow); if(flow != n) puts("N"); else printf("%d\n", ans); } return 0; }
以上是关于UVaLive 3353 Optimal Bus Route Design (最小费用流)的主要内容,如果未能解决你的问题,请参考以下文章
uva1349Optimal Bus Route Design
题解 UVA1349 Optimal Bus Route Design
UVA1349 Optimal Bus Route Design 拆点法+最小费用最佳匹配
UVa 1349 Optimal Bus Route Design (最佳完美匹配)