Pickle模块数据对象持久化操作

Posted 碧水幽幽泉

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pickle模块数据对象持久化操作相关的知识,希望对你有一定的参考价值。

Pickle模块的作用是持久化(序列化)的储存数据。
因此我先解释下:什么是序列化与反序列化、什么是对象序列化和对象反序列化。
通俗地讲,它们的定义如下:
序列化: 把一个对象保存到一个文件或数据库字段中去;
反序列化: 在适当的时候把这个文件再转化成原来的对象使用;
对象的序列化: 把对象转换为字节序列的过程;
对象的反序列化: 把字节序列恢复为对象的过程;

使用场合:
使用序列化主要是因为跨平台和对象存储的需求,因为网络上只允许字符串或者二进制格式,而文件需要使用二进制流格式。
如果想把一个内存中的对象存储下来就必须使用序列化转换为xml(字符串)、json(字符串)或二进制(流)等

注意: file.write/read操作的字符串对象,而pickle.dump/load操作的是结构化数据对象(如:列表、字典)。

常用接口:
(1) pickle.dump(obj, file, [,protocol])    #将obj对象序列化存入已经打开的file中。
     obj: 结构化对象
     file: 类文件对象(对象保存) 
    protocol: 序列化使用的协议版本。protocol默认值为0。
                  0:ASCII协议,所序列化的对象使用可打印的ASCII码表示;
                  1:老式的二进制协议;
                  2:2.3版本引入的新二进制协议,较以前的更高效
(2) pickle.load(file)                        # 将file中的对象序列化读出。
(3) pickle.dumps(obj[, protocol])   #以字节对象形式返回封装的对象,不需要写入文件中。
(4) pickle.loads(file)                      #从字节对象中读取被封装的对象,并返回。

dump能将多个对象序列化存储到同一个文件中,随后调用load()来以同样的顺序反序列化读出这些对象。

#pickle用法举例:  version: python 3.3.4
1.dump和load
>>> import pickle                           #导入pickle
>>> my_list = [ABC,123,中文,[123]]  #添加一个测试列表
>>> pickle_file = open(my_list.pkl,wb)  #文件(my_list.pkl)必须以二进制可写模式打开,即"wb"
>>> pickle.dump(my_list,pickle_file)        #调用pickle.dump方法,将my_list以二进制的方式写入pickle_file对象
>>> pickle_file.close()                     #关闭文件对象
>>> import os; os.getcwd()                  #引入os包,查看当前python目录
D:\\Python33
>>> os.listdir(D:\\Python33)              #查看指定目录下的文件,可以看到已经生成一个名为my_list.pkl的二进制文件     
[... my_list.pkl, .....]

>>> pickle_file2 = open(my_list.pkl,rb) #文件(my_list.pkl)必须以二进制可读模式打开,即"rb"
>>> my_list2 = pickle.load(pickle_file2)    #调用ickle.load方法,将以二进制格式保存的对象还原回来
>>> print (my_list2)
[ABC, 123, 中文, [123]]             #可以看出对象已经还原

#改进写法:
>>> import pickle
>>> my_list = [ABC,123,中文,[123]]
>>> with open(my_list.pkl,wb) as file1:  #采用with open as方式,不需要再调用close()
pickle.dump(my_list,file1)    
>>> import os
>>> os.listdir(os.getcwd())
[... my_list.pkl, .....]
>>> with open(my_list.pkl,rb) as file2:
new_list = pickle.load(file2)    
>>> print (new_list)
[ABC, 123, 中文, [123]]

2.dumps和loads
#测试元组
>>> import pickle                 #导入pickle
>>> tuple1 = (A,1,小泉)       #添加一个元祖
>>> tuple1
(A, 1, 小泉)
>>> str1 = pickle.dumps(tuple1)   #以字节对象形式返回封装的对象,不需要写入文件中
>>> str2 = pickle.loads(str1)     #从字节对象中读取被封装的对象
>>> print (str2)                  
(A, 1, 小泉)
>>> type(str2)
<class tuple>

#测试字符串
>>> str = Hello World!
>>> import pickle
>>> str1 = pickle.dumps(str)
>>> str2 = pickle.loads(str1)
>>> print (str2)
Hello World!
>>> type(str)
<class str>
>>> type(str2)
<class str>

Pickle与CPickle对比
前者是完全用Python来实现的模块,这个CPickle是用C来实现的,它的速度要比pickle快好多倍。
一般建议如果电脑中只要有CPickle的话都应该使用它。

参考资料:
pickle模块的使用讲解: http://blog.csdn.net/coffee_cream/article/details/51754484

以上是关于Pickle模块数据对象持久化操作的主要内容,如果未能解决你的问题,请参考以下文章

python数据持久存储:pickle模块的使用

[转]python数据持久存储:pickle模块的基本使用

python数据持久存储:pickle模块的基本使用

python3_pickle模块详解

python数据持久存储:pickle模块的基本使用

python二次学习之二(第一天学到的一个重点pickle模块)