poj 3708 Recurrent Function
Posted ZefengYao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj 3708 Recurrent Function相关的知识,希望对你有一定的参考价值。
Recurrent Function
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 1233 | Accepted: 336 |
Description
Dr. Yao is involved in a secret research on the topic of the properties of recurrent function. Some of the functions in this research are in the following pattern:
in which set {ai} = {1, 2, …, d-1} and {bi} = {0, 1, …, d-1}.
We denote:
Yao\'s question is that, given two positive integer m and k, could you find a minimal non-negative integer x that
Input
There are several test cases. The first line of each test case contains an integer d (2≤d≤100). The second line contains 2d-1 integers: a1, …, ad-1, followed by b0, ..., bd-1. The third line contains integer m (0<m≤10100), and the forth line contains integer k (0<k≤10100). The input file ends with integer -1.
Output
For each test case if it exists such an integer x, output the minimal one. We guarantee the answer is less than 263. Otherwise output a word "NO".
Sample Input
2 1 1 0 4 7 2 1 0 1 100 200 -1
Sample Output
1 NO
Hint
For the first sample case, we can see that f(4)=7. And for the second one, the function is f(i)=i.
题意:求解递归方程,该类方程在具体数学第一章中有明确介绍,这里只给结论,若要求解f(x),可以先将x转化成c进制c进制一共m位,即(xmxm-1...x1x0)c,那么有结论:
f((xmxm-1...x1x0)c)=(axmbxm-1bxm-2...bx1bx0)c
思路:结论已介绍,可以看出将x化成c进制后每一位都在进行置换操作,c进制首位用ai来置换,后面几位都用bi来置换。那么如果将k也转化成d进制,那么如果m的d进制的每一位通过不断置换之后最终与k的每一位分别相等,置换的最小次数x就是所求。
我们设最少置换x次,m的d进制的每一位各自置换到k的每一位需要ci次,并且每一位置换足够次数会产生轮回,轮回的大小记为loop(i)
那么x满足条件:
x==c1 mod(loop(1))
x==c2 mod(loop(2))
.....
x==cn mod(loop(n))
这样就是求满足上述模方程组的最小解即可。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<cstdio> #include<vector> #include<algorithm> #include<cstring> #include<set> #include<string> #include<queue> #include<cmath> using namespace std; #define INF 0x3f3f3f3f const int N_MAX = 10+500; typedef long long ll; // 大数类 class bign { #define base 1000 #define digit 3 private: int _arr[110]; int _m; void bign::_simplify(void) { for (int i = 0; i <= _m; i++) { if (i == _m && _arr[i] >= base) _m++; _arr[i + 1] += _arr[i] / base; _arr[i] %= base; } } public: bign::bign(void) : _m(0) { memset(_arr, 0, sizeof(_arr)); } bign::bign(int init) : _m(0) { memset(_arr, 0, sizeof(_arr)); _arr[0] = init; _simplify(); } friend istream& operator >> (istream& fin, bign& a) { char init[10010]; int len, b, t; fin >> init; len = strlen(init); a._m = -1; for (int i = len - 1; i >= 0;) { t = 0, b = 1; for (int j = 0; j < digit && i >= 0; j++, i--) { t += (init[i] - \'0\') * b; b *= 10; } a._arr[++a._m] = t; } return fin; } friend bign operator / (bign a, int b) { for (int i = a._m; i >= 0; i--) { if (a._arr[i] < b && i == a._m && i != 0) a._m--; if (i > 0) a._arr[i - 1] += (a._arr[i] % b) * base; a._arr[i] /= b; } return a; } friend int operator % (bign a, int b) { for (int i = a._m; i >= 0; i--) { if (i == 0) return a._arr[i] % b; else a._arr[i - 1] += (a._arr[i] % b) * base; } } friend bool operator == (bign a, bign b) { if (a._m != b._m) return false; for (int i = 0; i <= a._m; i++) if (a._arr[i] != b._arr[i]) return false; return true; } }; pair<ll,ll> trans(ll *a,ll m,ll k ) {//采用a置换,m为需要置换的数,k为m置换的终点,返回循环次和圈的大小 ll num = 0;//num为从m到k的循环次数,不存在则为-1 ll tmp = m; while (tmp!=k) { if (num != 0 && tmp == m) { num = -1; break; } num++; tmp = a[tmp]; } if (num == -1)return make_pair(-1, 0); int loop = 0; while (1) { if (loop != 0 && tmp == k) { break; } loop++; tmp = a[tmp]; } return make_pair(num,loop); } ll gcd(ll a,ll b) { if (b == 0)return a; return gcd(b, a%b); } ll extgcd(ll a,ll b,ll &x,ll &y) { if (b == 0) { x = 1; y = 0; return a; } ll ans = extgcd(b,a%b,x,y); ll tmp = x; x = y; y = tmp - a / b*y; return ans; } ll mod_inverse(ll a,ll m) { ll x, y; extgcd(a,m,x,y); return (m + x%m) % m; } pair<ll, ll>linear_congruence(const ll *A,const ll *B,const ll*M,const int& num) { ll x = 0,m = 1; for (int i = 0; i < num;i++) { ll a = A[i] * m, b = B[i] - A[i] * x, d = gcd(M[i], a); if (b%d != 0)return make_pair(0, -1); ll t = b / d*mod_inverse(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } return make_pair((x%m+m)%m, m); } ll d; ll a[N_MAX], b[N_MAX]; bign k, m; ll kd[N_MAX], md[N_MAX];//存储k和m的D进制形式 ll A[N_MAX], B[N_MAX], M[N_MAX]; int main() { while(scanf("%lld",&d)&&d!=-1) { for (int i = 1; i < d;i++)scanf("%lld",&a[i]); for (int i = 0; i < d;i++)scanf("%lld",&b[i]); cin >> m >> k; int num = 0; while (!(m==0)) { md[num++] = m%d; m =m/ d; } int num2 = 0; while (!(k == 0)) { kd[num2++] = k%d; k = k / d; } if (num != num2) { puts("NO"); continue; } pair<ll, ll>P; bool flag = 0; for (int i = 0; i < num-1;i++) { P = trans(b,md[i],kd[i]); if (P.first == -1) { puts("NO"); flag = 1; break; } A[i] = 1, B[i] = P.first, M[i] = P.second; } if (flag)continue; P = trans(a, md[num - 1], kd[num - 1]); if (P.first == -1) { puts("NO"); continue; } A[num - 1] = 1, B[num - 1] = P.first, M[num - 1] = P.second; P = linear_congruence(A,B,M,num); if(P.second==-1) { puts("NO"); continue; } else printf("%lld\\n",P.first); } return 0; }
以上是关于poj 3708 Recurrent Function的主要内容,如果未能解决你的问题,请参考以下文章