RabbitMQ
Posted _慕
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RabbitMQ相关的知识,希望对你有一定的参考价值。
一、RabbitMQ安装
#Centos7 安装 #注意/etc/hosts文件 ip和主机名对应 wget https://github.com/rabbitmq/rabbitmq-server/releases/download/rabbitmq_v3_6_10/rabbitmq-server-3.6.10-1.el7.noarch.rpm yum install epel-release -y yum install rabbitmq-server-3.6.10-1.el7.noarch.rpm rabbitmq-plugins enable rabbitmq_management cp /usr/share/doc/rabbitmq-server-3.6.10/rabbitmq.config.example /etc/rabbitmq/rabbitmq.config systemctl restart rabbitmq-server systemctl status rabbitmq-server #创建用户 授权 rabbitmqctl add_user gmu gmu1592618 rabbitmqctl set_permissions -p / gmu ".*" ".*" ".*" #启动服务 service rabbitmq-server start
进入cmd 安装pika
pip install pika
二、示例
1. 服务端和客户端一对一
import pika credentials = pika.PlainCredentials("gmu","gmu1592618") #授权的账号 密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建rabbit协议通道 channel.queue_declare(\'team1\') #通过通道生成一个队列 channel.basic_publish(exchange=\'\', routing_key = \'team1\', #队列 body = \'hello I am first msg\' #发送的消息 ) print(" [x] Sent \'hello I am first msg\'") connection.close() #断开连接
import pika credentials = pika.PlainCredentials(\'gmu\',\'gmu1592618\') #授权的账号和密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建协议通道 channel.queue_declare(\'team1\') #通过通道生成一个队列 def callback(ch,method,properties,body): print(ch) #上面channel = connection.channel()对象 print(method) #除了服务端本身的数据,还带一些参数 print(properties) #属性 print(body) #byte数据 channel.basic_consume(callback,queue=\'team1\',no_ack=True) print(\' [*] Waiting for messages. To exit press CTRL+C\') channel.start_consuming() #阻塞
2.消息持久化
#- 开启一个服务端,两个客户端 #- 服务端向队列中存放一个值,一客户端从队列中取到数据,在睡20秒期间中断,表示出错,它不会报告给服务端 #- 这时队列中为零,另一客户端也不会取到值 # no_ack=True 表示客户端处理完了不需要向服务端确认消息
import pika credentials = pika.PlainCredentials("gmu","gmu1592618") #授权的账号 密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建rabbit协议通道 channel.queue_declare(\'team1\') #通过通道生成一个队列 channel.basic_publish(exchange=\'\', routing_key = \'team1\', #队列 body = \'hello I am first msg\' #发送的消息 ) print(" [x] Sent \'hello I am first msg\'") connection.close() #断开连接
import pika,time credentials = pika.PlainCredentials(\'gmu\',\'gmu1592618\') #授权的账号和密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建协议通道 channel.queue_declare(\'team1\') #通过通道生成一个队列 def callback(ch,method,properties,body): print("received msg...start process",body) time.sleep(10) print("end process...") channel.basic_consume(callback,queue=\'team1\',no_ack=True) print(\' [*] Waiting for messages. To exit press CTRL+C\') channel.start_consuming() #阻塞
3.队列持久化
#队列持久化 channel.queue_declare(queue=\'hello\',durable=True) # *** systemctl restart rabbitmq-server #重启服务发现hello队列还在,但是消息不在 rabbitmqctl list_queues #team1 #队列和消息持久化 channel.queue_declare(queue=\'hello\',durable=True) properties=pika.BasicProperties( delivery_mode=2, # make message persistent *** ), systemctl restart rabbitmq-server #重启服务发现队列和消息都还在 rabbitmqctl list_queues #team1 5
import pika credentials = pika.PlainCredentials("gmu","gmu1592618") #授权的账号 密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建rabbit协议通道 channel.queue_declare(\'team1\',durable=True) #通过通道生成一个队列,且队列持久化 channel.basic_publish(exchange=\'\', routing_key = \'team1\', #队列 properties=pika.BasicProperties( delivery_mode=2, # make message persistent 加参数2 消息持久化 ), body = \'hello I am first msg\' #发送的消息 ) print(" [x] Sent \'hello I am first msg\'") connection.close() #断开连接
4.模拟客户端中断 观察服务端队列的数据会不会返回(会)
#1. 生产者端发消息时,加参数 消息持久化 properties=pika.BasicProperties( delivery_mode=2, # make message persistent ), #2. 消费者端,消息处理完毕时,发送确认包 ch.basic_ack(delivery_tag=method.delivery_tag) channel.basic_consume(callback, #取到消息后,调用callback 函数 queue=\'task1\',) #no_ack=True) #消息处理后,不向rabbit-server确认消息已消费完毕 #- 开启一个服务端,两个客户端 #- 服务端向队列中存放一个值,一客户端从队列中取到数据,在睡20秒期间中断,表示出错,它会报给服务端,服务端队列还有值 #- 这时启动另一客户端还可以取到值
import pika credentials = pika.PlainCredentials("gmu","gmu1592618") #授权的账号 密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建rabbit协议通道 channel.queue_declare(\'team1\') #通过通道生成一个队列 channel.basic_publish(exchange=\'\', routing_key = \'team1\', #队列 properties=pika.BasicProperties( delivery_mode=2, # make message persistent 加参数2 消息持久化 ), body = \'hello I am first msg\' #发送的消息 ) print(" [x] Sent \'hello I am first msg\'") connection.close() #断开连接
import pika,time credentials = pika.PlainCredentials(\'gmu\',\'gmu1592618\') #授权的账号和密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建协议通道 channel.queue_declare(\'team1\') #通过通道生成一个队列 def callback(ch,method,properties,body): print("received msg...start process",body) time.sleep(10) print("end process...") ch.basic_ack(delivery_tag=method.delivery_tag) #消费者端,消息处理完毕时,发送确认包 channel.basic_consume(callback,queue=\'team1\') print(\' [*] Waiting for messages. To exit press CTRL+C\') channel.start_consuming() #阻塞
三、广播、组播、规则传播
1.广播 fanout
#服务端: - 不需要申明队列 #客户端: - 每个客户端都需要申明一个队列,自动设置队列名称,收听广播,当收听完后queue删除 - 把队列绑定到exchange上 #注意:客户端先打开,服务端再打开,客户端会收到消息 #应用: - 微博粉丝在线,博主发消息,粉丝可以收到 #如果服务端先启动向exchange发消息,这时客户端没有启动,没有队列保存数据(exchange不负责保存数据) #这时数据会丢,队列中没有数据 #exchange只负责转发
import pika,sys credentials = pika.PlainCredentials("gmu","gmu1592618") #授权的账号 密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建rabbit协议通道 channel.exchange_declare(exchange=\'logs\',type=\'fanout\') message = \' \'.join(sys.argv[1:]) or "info: hello I am first msg" channel.basic_publish(exchange=\'logs\', routing_key = \'\', #队列 properties=pika.BasicProperties( delivery_mode=2, # make message persistent 加参数2 消息持久化 ), body = message #发送的消息 ) print(" [x] Sent \'%s\'"%message) connection.close() #断开连接
import pika,time credentials = pika.PlainCredentials(\'gmu\',\'gmu1592618\') #授权的账号和密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建协议通道 channel.exchange_declare(exchange=\'logs\', type=\'fanout\') queue_obj = channel.queue_declare(exclusive=True) #不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除 queue_name = queue_obj.method.queue channel.queue_bind(exchange=\'logs\',queue=queue_name) #绑定队列到Exchange print(\' [*] Waiting for logs. To exit press CTRL+C\') def callback(ch, method, properties, body): print(" [x] %r" % body) channel.basic_consume(callback,queue=queue_name, no_ack=True) channel.start_consuming() #阻塞
2.组播 direct
#客户端一: - python3 consumer.py info #客户端二: - python3 consumer.py error #客户端三: - python3 consumer.py warning #客户端四: - python3 consumer.py warning error info #服务端: - python3 producer.py warning
import pika,sys credentials = pika.PlainCredentials("gmu","gmu1592618") #授权的账号 密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建rabbit协议通道 channel.exchange_declare(exchange=\'direct_logs\',type=\'direct\') severity = sys.argv[1] if len(sys.argv) > 1 else \'info\' message = \' \'.join(sys.argv[2:]) or "info: hello I am first msg" channel.basic_publish(exchange=\'direct_logs\', routing_key = severity, #队列 body = message #发送的消息 ) print(" Send %r:%r" % (severity, message)) connection.close() #断开连接
import pika,sys credentials = pika.PlainCredentials(\'gmu\',\'gmu1592618\') #授权的账号和密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建协议通道 channel.exchange_declare(exchange=\'direct_logs\',type=\'direct\') result = channel.queue_declare(exclusive=True) # queue_name = result.method.queue severities = sys.argv[1:] if not severities: sys.stderr.write("Usage: %s [info] [warning] [error]\\n" % sys.argv[0]) sys.exit(1) for severity in severities: channel.queue_bind(exchange=\'direct_logs\', queue=queue_name, routing_key=severity) print(\' [*] Waiting for logs. To exit press CTRL+C\') def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()
3.规则传播 topic
#客户端一:#以django 结尾 - python3 consumer.py *.django #客户端二:#包含mysql.error - python3 consumer.py mysql.error #客户端三:#以mysql.开头 - python3 consumer.py mysql.* #服务端: - python3 producer.py #匹配相应的客户端
import pika,sys credentials = pika.PlainCredentials("gmu","gmu1592618") #授权的账号 密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建rabbit协议通道 channel.exchange_declare(exchange=\'topic_logs\',type=\'topic\') routing_key = sys.argv[1] if len(sys.argv) > 1 else \'anonymous.info\' message = \' \'.join(sys.argv[2:]) or \'Hello World!\' channel.basic_publish(exchange=\'topic_logs\', routing_key=routing_key, #队列 body=message) #发送的消息 print(" [x] Sent %r:%r" % (routing_key, message)) connection.close()
import pika,sys,time credentials = pika.PlainCredentials(\'gmu\',\'gmu1592618\') #授权的账号和密码 connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket channel = connection.channel() #创建协议通道 channel.exchange_declare(exchange=\'topic_logs\',type=\'topic\') result = channel.queue_declare(exclusive=True) # queue_name = result.method.queue binding_keys = sys.argv[1:] if not binding_keys: print(sys.argv[1:]) sys.stderr.write("Usage: %s [binding_key]...\\n" % sys.argv[0]) sys.exit(1) for binding_key in binding_keys: channel.queue_bind(exchange=\'topic_logs\', queue=queue_name, routing_key=binding_key) #绑定队列到Exchange print(\' [*] Waiting for logs. To exit press CTRL+C\') def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()
Remote procedure call (RPC) 远程过程调用
从上边所有的例子中你有没有发现,上面的队列都是单向执行的,需要有发送端和接收端。如果远程的一台机器执行完毕再返回结果,那就实现不了了。如果让他执行完返回,这种模式叫什么呢?RPC(远程过程调用),snmp就是典型的RPC。
那RabbitMQ能不能返回呢,怎么返回呢?可以让机器既是发送端又是接收端。但是接收端返回消息怎么返回?可以发送到发过来的queue里么?答案当然是不可以,如果还是存在原先的队列就会直接陷入死循环!所以返回时,需要让消息内部指定再建立一个队列queue,把结果发送新的queue里。
同时,为了 "执行命令端 "返回的queue不写死,在 "发送命令端" 给 "执行命令端 "发指令的的时候,同时带一条消息说,你结果返回给哪个queue
在执行多个消息任务的时候,怎么区分判断哪个消息是先执行呢?答案就是,在发任务时,再额外提交一个唯一标识符。
task1,task2异步执行,但是返回的顺序是不固定的,为了区分是谁执行完的,在发送的任务添加唯一标识符,这样取回的时候就能区分。
设置一个异步RPC
声明一个队列reply_to,作为返回消息结果的队列
发送消息队列,消息中带唯一标识uid
监听reply_to队列,直到有结果
在类中声明监听
发送命令客户端:
import pika,sys,uuid # 发送命令端 import threading,random #单独起一个线程,只负责发指令 # 1.声明一个队列,作为reply_to返回消息结果的队列 # 2. 发消息到队列,消息里带一个唯一标识符uid,reply_to # 3. 监听reply_to 的队列,直到有结果 class CMDRpcClient(object): def __init__(self): credentials = pika.PlainCredentials(\'gmu\',\'gmu1592618\') #授权的账号和密码 self.connection = pika.BlockingConnection(pika.ConnectionParameters(\'45.77.203.27\',5672,\'/\',credentials=credentials)) #建立socket # self.connection = pika.BlockingConnection(pika.ConnectionParameters(host=\'localhost\',port=5672)) self.channel = self.connection.channel() #创建协议通道 result = self.channel.queue_declare(exclusive=True) # 声明一个队列,作为reply_to返回消息结果的队列 self.callback_queue = result.method.queue # 命令的执行结果的queue # 声明要监听callback_queue self.channel.basic_consume(self.on_response, no_ack=True, queue=self.callback_queue) #声明监听callback_queue队列,收到消息后调用函数on_response def on_response(self, ch, method, props, body): """ 收到服务器端命令结果后执行这个函数 :param ch: :param method: :param props:执行命令端返回的 :param body: :return: """ if self.corr_id == props.correlation_id: #如果发送命令端的uuid对于执行命令端返回的uuid self.response = body.decode("gbk") # 把执行命令端的执行结果赋值给Response def call(self, cmd): self.response = None self.corr_id = str(uuid.uuid4()) # 唯一标识符号 self.channel.basic_publish(exchange=\'\', routing_key=\'rpc_queue\', properties=pika.BasicProperties( reply_to=self.callback_queue, correlation_id=self.corr_id, ), body=str(cmd)) while self.response is None: #检测队列的时候可以同时检测命令队列q中有没有值,有的话执行run函数 self.connection.process_data_events() # 检测监听的队列里有没有新消息,如果有,收,如果没有,返回None # 检测有没有要发送的新指令 return self.response class MY_THREAD(): def __init__(self): self.info = {} self.help_info <以上是关于RabbitMQ的主要内容,如果未能解决你的问题,请参考以下文章
带着新人学springboot的应用07(springboot+RabbitMQ 下)