图解排序算法之归并排序

Posted Tao-Coder

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图解排序算法之归并排序相关的知识,希望对你有一定的参考价值。

基本思想

  归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。

分而治之

   可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。阶段可以理解为就是递归拆分子序列的过程,递归深度为log2n。

合并相邻有序子序列

  再来看看阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤。

代码实现

import java.util.Arrays;

/**
 * Created by chengxiao on 2016/12/8.
 */
public class MergeSort {
    public static void main(String []args){
        int []arr = {9,8,7,6,5,4,3,2,1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }
    public static void sort(int []arr){
        int []temp = new int[arr.length];//在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间
        sort(arr,0,arr.length-1,temp);
    }
    private static void sort(int[] arr,int left,int right,int []temp){
        if(left<right){
            int mid = (left+right)/2;
            sort(arr,left,mid,temp);//左边归并排序,使得左子序列有序
            sort(arr,mid+1,right,temp);//右边归并排序,使得右子序列有序
            merge(arr,left,mid,right,temp);//将两个有序子数组合并操作
        }
    }
    private static void merge(int[] arr,int left,int mid,int right,int[] temp){
        int i = left;//左序列指针
        int j = mid+1;//右序列指针
        int t = 0;//临时数组指针
        while (i<=mid && j<=right){
            if(arr[i]<=arr[j]){
                temp[t++] = arr[i++];
            }else {
                temp[t++] = arr[j++];
            }
        }
        while(i<=mid){//将左边剩余元素填充进temp中
            temp[t++] = arr[i++];
        }
        while(j<=right){//将右序列剩余元素填充进temp中
            temp[t++] = arr[j++];
        }
        t = 0;
        //将temp中的元素全部拷贝到原数组中
        while(left <= right){
            arr[left++] = temp[t++];
        }
    }
}

单向链表的归并排序:

ListNode *sortList(ListNode *head) {
        if(head==nullptr||head->next==nullptr)
            return head;
        //采用快慢指针找到中间节点
        ListNode *fast=head,*slow=head;
           while(fast!=nullptr&&fast->next!=nullptr&&fast->next->next!=nullptr){
            fast=fast->next->next;
            slow=slow->next;
        }
        //断开
        fast=slow;
        slow=slow->next;
        fast->next=nullptr;
        fast=sortList(head);
        slow=sortList(slow);
        return merge(fast,slow);
    }
    
     ListNode* merge(ListNode* sub1,ListNode* sub2){
        if(sub1==nullptr)return sub2;
        if(sub2==nullptr)return sub1;
        
        ListNode* head=nullptr;
        if(sub1->val<sub2->val){
            head=sub1;
            sub1=sub1->next;
        }
        else{
            head=sub2;
            sub2=sub2->next;
        }
        ListNode* p=head;
        while(sub1!=nullptr&&sub2!=nullptr){
            if(sub1->val<sub2->val){
                p->next=sub1;
                sub1=sub1->next;
            }
            else{
                p->next=sub2;
                sub2=sub2->next;
            }
            p=p->next;
        }
        if(sub1!=nullptr)
            p->next=sub1;
        if(sub2!=nullptr)
            p->next=sub2;
        return head;
    }

最后

  归并排序是稳定排序,它也是一种十分高效的排序,能利用完全二叉树特性的排序一般性能都不会太差。java中Arrays.sort()采用了一种名为TimSort的排序算法,就是归并排序的优化版本。从上文的图中可看出,每次合并操作的平均时间复杂度为O(n),而完全二叉树的深度为|log2n|。总的平均时间复杂度为O(nlogn)。而且,归并排序的最好,最坏,平均时间复杂度均为O(nlogn)。

以上是关于图解排序算法之归并排序的主要内容,如果未能解决你的问题,请参考以下文章

图解排序算法之归并排序

图解排序算法之归并排序

图解排序算法之归并排序

图解排序算法之归并排序

排序算法之归并排序(Java)

排序算法之归并排序(Java)