多线程并发快速处理数据
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多线程并发快速处理数据相关的知识,希望对你有一定的参考价值。
方法1
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class LargSumWithCallable {
static int threadCounts =10;//使用的线程数
static long sum=0;
public static void main(String []args) throws InterruptedException, ExecutionException{
ExecutorService exec=Executors.newFixedThreadPool(threadCounts);
List<Callable<Long>> callList=new ArrayList<Callable<Long>>();
List<Integer> list = new ArrayList<Integer>();
for (int j = 0; j <= 1000000;j++) {
list.add(j);
}
int len=list.size()/threadCounts;//平均分割List
//List中的数量没有线程数多(很少存在)
if(len==0){
threadCounts=list.size();//采用一个线程处理List中的一个元素
len=list.size()/threadCounts;//重新平均分割List
}
for(int i=0;i<threadCounts;i++){
final List<Integer> subList;
if(i==threadCounts-1){
subList=list.subList(i*len,list.size());
}else{
subList=list.subList(i*len, len*(i+1)>list.size()?list.size():len*(i+1));
}
//采用匿名内部类实现
callList.add(new Callable<Long>(){
public Long call() throws Exception {
long subSum=0L;
for(Integer i:subList){
subSum+=i;
}
System.out.println("分配给线程:"+Thread.currentThread().getName()+"那一部分List的整数和为:\tSubSum:"+subSum);
return subSum;
}
});
}
List<Future<Long>> futureList=exec.invokeAll(callList);
for(Future<Long> future:futureList){
sum+=future.get();
}
exec.shutdown();
System.out.println(sum);
}
}
方法2
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class LargeListIntegerSum {
private long sum;//存放整数的和
private CyclicBarrier barrier;//障栅集合点(同步器)
private List<Integer> list;//整数集合List
private int threadCounts;//使用的线程数
public LargeListIntegerSum(List<Integer> list,int threadCounts) {
this.list=list;
this.threadCounts=threadCounts;
}
/**
* 获取List中所有整数的和
* @return
*/
public long getIntegerSum(){
ExecutorService exec=Executors.newFixedThreadPool(threadCounts);
int len=list.size()/threadCounts;//平均分割List
//List中的数量没有线程数多(很少存在)
if(len==0){
threadCounts=list.size();//采用一个线程处理List中的一个元素
len=list.size()/threadCounts;//重新平均分割List
}
barrier=new CyclicBarrier(threadCounts+1);
for(int i=0;i<threadCounts;i++){
//创建线程任务
if(i==threadCounts-1){//最后一个线程承担剩下的所有元素的计算
exec.execute(new SubIntegerSumTask(list.subList(i*len,list.size())));
}else{
exec.execute(new SubIntegerSumTask(list.subList(i*len, len*(i+1)>list.size()?list.size():len*(i+1))));
}
}
try {
barrier.await();//关键,使该线程在障栅处等待,直到所有的线程都到达障栅处
} catch (InterruptedException e) {
System.out.println(Thread.currentThread().getName()+":Interrupted");
} catch (BrokenBarrierException e) {
System.out.println(Thread.currentThread().getName()+":BrokenBarrier");
}
exec.shutdown();
return sum;
}
/**
* 分割计算List整数和的线程任务
*
*/
public class SubIntegerSumTask implements Runnable{
private List<Integer> subList;
public SubIntegerSumTask(List<Integer> subList) {
this.subList=subList;
}
public void run() {
long subSum=0L;
for (Integer i : subList) {
subSum += i;
}
synchronized(LargeListIntegerSum.this){//在LargeListIntegerSum对象上同步
sum+=subSum;
}
try {
barrier.await();//关键,使该线程在障栅处等待,直到所有的线程都到达障栅处
} catch (InterruptedException e) {
System.out.println(Thread.currentThread().getName()+":Interrupted");
} catch (BrokenBarrierException e) {
System.out.println(Thread.currentThread().getName()+":BrokenBarrier");
}
System.out.println("分配给线程:"+Thread.currentThread().getName()+"那一部分List的整数和为:\tSubSum:"+subSum);
}
}
public static void main(String[] args) {
List<Integer> list = new ArrayList<Integer>();
int threadCounts = 10;//采用的线程数
for (int i = 1; i <= 1000000; i++) {
list.add(i);
}
long start= System.currentTimeMillis();
LargeListIntegerSum countListIntegerSum=new LargeListIntegerSum(list,threadCounts);
long sum=countListIntegerSum.getIntegerSum();
System.out.println("List中所有整数的和为:"+sum);
long end= System.currentTimeMillis();
System.out.println(end-start);
}
}
以上是关于多线程并发快速处理数据的主要内容,如果未能解决你的问题,请参考以下文章