poj 3264(RMQ或者线段树)

Posted AC菜鸟机

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj 3264(RMQ或者线段树)相关的知识,希望对你有一定的参考价值。

Balanced Lineup
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 42929   Accepted: 20184
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John‘s N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

Source

题意:区间最大值与最小值之差RMQ版:(不懂的可以参考blog)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
#define N 50010

int a[N];
int max_dp[N][20];
int min_dp[N][20];
int MAX(int i,int j){
    if(i>=j) return i;
    return j;
}
int MIN(int i,int j){
    if(i<=j) return i;
    return j;
}
void init_MAX_RMQ(int n){
    for(int i=1;i<=n;i++) max_dp[i][0]=a[i];
    for(int j=1;(1<<j)<=n;j++){
        for(int i=1;i<=n-(1<<j)+1;i++){
            ///F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。
            max_dp[i][j] = MAX(max_dp[i][j-1],max_dp[i+(1<<(j-1))][j-1]);
        }
    }
}
int MAX_RMQ(int a,int b){
    int k = (int)(log(b-a+1.0)/log(2.0));
    ///RMQ(A, i, j)=min{F[i,k],F[j-2^k+1,k]}
    return MAX(max_dp[a][k],max_dp[b-(1<<k)+1][k]);
}
void init_MIN_RMQ(int n){
    for(int i=1;i<=n;i++) min_dp[i][0]=a[i];
    for(int j=1;(1<<j)<=n;j++){
        for(int i=1;i<=n-(1<<j)+1;i++){
            min_dp[i][j] = MIN(min_dp[i][j-1],min_dp[i+(1<<(j-1))][j-1]);
        }
    }
}
int MIN_RMQ(int a,int b){
    int k = (int)(log(b-a+1.0)/log(2.0));
    return MIN(min_dp[a][k],min_dp[b-(1<<k)+1][k]);
}
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF){
        for(int i=1;i<=n;i++){
            scanf("%d",&a[i]);
        }
        init_MAX_RMQ(n);
        init_MIN_RMQ(n);
        while(m--){
            int a,b;
            scanf("%d%d",&a,&b);
            printf("%d\n",MAX_RMQ(a,b)-MIN_RMQ(a,b));
        }
    }
    return 0;
}

线段树:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
#define N 50010

struct Tree{
    int l,r;
    int Max,Min;
}tree[4*N];
int a[N];
int MAX_VALUE;
int MIN_VALUE;
int MAX(int i,int j){
    if(i>=j) return i;
    return j;
}
int MIN(int i,int j){
    if(i<=j) return i;
    return j;
}
void PushUp(int idx){
    tree[idx].Max = MAX(tree[idx<<1].Max,tree[idx<<1|1].Max);
    tree[idx].Min = MIN(tree[idx<<1].Min,tree[idx<<1|1].Min);
}
void build(int l,int r,int idx){
    tree[idx].l = l;
    tree[idx].r = r;
    if(l==r) {
        tree[idx].Max = tree[idx].Min = a[l];
        return ;
    }
    int mid=(l+r)>>1;
    build(l,mid,idx<<1);
    build(mid+1,r,idx<<1|1);
    PushUp(idx);
}
void query(int l,int r,int idx){
    if(tree[idx].l==l&&tree[idx].r==r){
        MAX_VALUE = MAX(MAX_VALUE,tree[idx].Max);
        MIN_VALUE = MIN(MIN_VALUE,tree[idx].Min);
        return;
    }
    int mid=(tree[idx].l+tree[idx].r)>>1;
    if(mid>=r) query(l,r,idx<<1);
    else if(mid<l) query(l,r,idx<<1|1);
    else{
        query(l,mid,idx<<1);
        query(mid+1,r,idx<<1|1);
    }
}
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF){
        for(int i=1;i<=n;i++){
            scanf("%d",&a[i]);
        }
        build(1,n,1);
        while(m--){
            int b,c;
            scanf("%d%d",&b,&c);
            MAX_VALUE=-1;
            MIN_VALUE=1000001;
            query(b,c,1);
            printf("%d\n",MAX_VALUE-MIN_VALUE);
        }
    }
    return 0;
}

 

以上是关于poj 3264(RMQ或者线段树)的主要内容,如果未能解决你的问题,请参考以下文章

POJ - 3264(线段树实现)

POJ 3264

POJ 3264 Balanced Lineup

poj3264 线段树

poj3264------线段树

POJ3264-Balanced Lineup-线段树