TensorFlow Saver的使用方法
Posted 午夜稻草人
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TensorFlow Saver的使用方法相关的知识,希望对你有一定的参考价值。
我们经常在训练完一个模型之后希望保存训练的结果,这些结果指的是模型的参数,以便下次迭代的训练或者用作测试。Tensorflow针对这一需求提供了Saver类。
- Saver类提供了向checkpoints文件保存和从checkpoints文件中恢复变量的相关方法。Checkpoints文件是一个二进制文件,它把变量名映射到对应的tensor值 。
- 只要提供一个计数器,当计数器触发时,Saver类可以自动的生成checkpoint文件。这让我们可以在训练过程中保存多个中间结果。例如,我们可以保存每一步训练的结果。
- 为了避免填满整个磁盘,Saver可以自动的管理Checkpoints文件。例如,我们可以指定保存最近的N个Checkpoints文件。
示例代码:
import tensorflow as tf import numpy as np from six.moves import xrange x = tf.placeholder(tf.float32, shape=[None, 1]) y = 4 * x + 2 w = tf.Variable(tf.random_normal([1], -1, 1)) b = tf.Variable(tf.zeros([1])) y_predict = w * x + b loss = tf.reduce_mean(tf.square(y - y_predict)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) #isTrain = True isTrain = False train_steps = 100 checkpoint_steps = 50 checkpoint_dir = ‘test/‘ saver = tf.train.Saver() # defaults to saving all variables - in this case w and b x_data = np.reshape(np.random.rand(10).astype(np.float32), (10, 1)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) if isTrain: for i in xrange(train_steps): sess.run(train, feed_dict={x: x_data}) if (i + 1) % checkpoint_steps == 0: saver.save(sess, checkpoint_dir + ‘model.ckpt‘, global_step=i + 1) else: ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) else: pass print(sess.run(w)) print(sess.run(b)) y_result = sess.run(y_predict, feed_dict={x: np.reshape(4, (1, 1))}) print(y_result)
2.1 训练阶段
使用Saver.save()方法保存模型:
- sess:表示当前会话,当前会话记录了当前的变量值
- checkpoint_dir + ‘model.ckpt‘:表示存储的文件名
- global_step:表示当前是第几步
打开名为“checkpoint”的文件,可以看到保存记录,和最新的模型存储位置。
2.2测试阶段
测试阶段使用saver.restore()方法恢复变量:
- sess:表示当前会话,之前保存的结果将被加载入这个会话
- ckpt.model_checkpoint_path:表示模型存储的位置,不需要提供模型的名字,它会去查看checkpoint文件,看看最新的是谁,叫做什么。
以上是关于TensorFlow Saver的使用方法的主要内容,如果未能解决你的问题,请参考以下文章
tf.train.Saver()-tensorflow中模型的保存及读取
TensorFlow,缺少检查点文件。 saver 是不是只允许保留 5 个检查点?