数据分析与展示——Matplotlib基础绘图函数示例

Posted Python学习者

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据分析与展示——Matplotlib基础绘图函数示例相关的知识,希望对你有一定的参考价值。

Matplotlib库入门

Matplotlib基础绘图函数示例

pyplot基础图表函数概述

函数说明
plt.plot(x,y,fmt, ...) 绘制一个坐标图
plt.boxplot(data,notch,position) 绘制一个箱体图
plt.bar(left,height,width,bottom) 绘制一个条形图
plt.barh(width,bottom,left,height) 绘制一个横向条形图
plt.polar(theta,r) 绘制极坐标图
plt.pie(data,explode) 绘制饼图
plt.pas(x,NFFT=256,pad_to,Fs) 绘制功率谱密度图
plt.specgram(x,NFFT=256,pad_to,F) 绘制谱图
plt.cohere(x,y,NFFT=256,Fs) 绘制X-Y的相关性函数
plt.scatter(x,y) 绘制散点图,其中,x和y长度相同
plt.step(x,y,where) 绘制步阶图
plt.hist(x,bins,normed) 绘制直方图
plt.contour(X,Y,Z,N) 绘制等值图
plt.vlines() 绘制垂直图
plt.stem(x,y,linefmt,markerfmt) 绘制柴火图
plt.plot_date() 绘制数据日期

pyplot饼图的绘制

import matplotlib.pyplot as plt

labels = \'Frogs\', \'Hogs\' ,\'Dogs\' ,\'Logs\'
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0)

plt.pie(sizes, explode=explode, labels=labels, autopct=\'%1.1f%%\', shadow=False,startangle=90)

plt.show()

 

import matplotlib.pyplot as plt

labels = \'Frogs\', \'Hogs\' ,\'Dogs\' ,\'Logs\'
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0)

plt.pie(sizes, explode=explode, labels=labels, autopct=\'%1.1f%%\', shadow=False,startangle=90)

plt.axis(\'equal\')
plt.show()

pyplot直方图的绘制

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(0)
mu, sigma = 100, 20     # 均值和标准差
a = np.random.normal(mu, sigma, size=100)

plt.hist(a, 20, normed=1, histtype=\'stepfilled\', facecolor=\'b\', alpha=0.75)    # 第二个参数bin:直方图的个数
plt.title(\'Histogram\')

plt.show()

pyplot极坐标的绘制

import numpy as np
import matplotlib.pyplot as plt

N = 20
theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False)
radii = 10 * np.random.rand(N)
width = np.pi / 4 * np.random.rand(N)

ax = plt.subplot(111, projection=\'polar\')
bars = ax.bar(theta, radii, width = width, bottom = 0.0)

for r, bar in zip(radii, bars):
    bar.set_facecolor(plt.cm.viridis(r / 10.))
    bar.set_alpha(0.5)

plt.show()

pyplot散点图的绘制

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.plot(10 * np.random.randn(100), 10 * np.random.randn(100), \'o\')
ax.set_title(\'Simple Scatter\')

plt.show()

 

 

以上是关于数据分析与展示——Matplotlib基础绘图函数示例的主要内容,如果未能解决你的问题,请参考以下文章

数据分析与展示---Matplotlib入门

matplotlib快速入门

matplotlib快速入门

Python基础——matplotlib库的使用与绘图可视化

Matplotlib数据可视化相关知识及画图例子展示

Matplotlib数据可视化相关知识及画图例子展示