cuda编程-矩阵乘法
Posted BlueOceans
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了cuda编程-矩阵乘法相关的知识,希望对你有一定的参考价值。
本方法采用简单的单线程计算每组行和列乘加运算
代码如下:
#include <stdio.h> #include <stdlib.h> #include <iostream> #include <cuda_runtime.h> __global__ void matrixMulKernel(float *C, float *A, float *B, int width, int height){ int tx = blockIdx.x * blockDim.x + threadIdx.x; int ty = blockIdx.y * blockDim.y + threadIdx.y; if(tx >= width || ty >= height) return; float sum = 0; for(int i=0; i<width; ++i){ sum += A[ty * width + i] * B[i * width + tx]; } C[ty * width + tx] = sum; } void constantInit(float *data, int size, float val){ for (int i = 0; i < size; ++i){ data[i] = val; } } void matrixMul(){ unsigned int width = 128; unsigned int height = 128; unsigned int size = width * height * sizeof(float); float *h_A = (float*)malloc(size); float *h_B = (float*)malloc(size); float *h_C = (float*)malloc(size); // Initialize host memory const float valB = 0.01f; constantInit(h_A, width*height, 1.0f); constantInit(h_B, width*height, valB); float *d_A, *d_B, *d_C; cudaMalloc((void**)&d_A, size); cudaMalloc((void**)&d_B, size); cudaMalloc((void**)&d_C, size); //copy host memory to device cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice); //config dims dim3 block(16, 16); dim3 grid(width / block.x, height / block.y); // Excute the kernel matrixMulKernel<<<grid, block>>>(d_C, d_A, d_B, width, height); // Copy the memory from device to host cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); printf("Checking computed result for correctness: "); bool correct = true; // test relative error by the formula // |<x, y>_cpu - <x,y>_gpu|/<|x|, |y|> < eps double eps = 1.e-6 ; // machine zero for (int i = 0; i < width*height; i++){ double abs_err = fabs(h_C[i] - (width * valB)); double dot_length = width; double abs_val = fabs(h_C[i]); double rel_err = abs_err/abs_val/dot_length ; if (rel_err > eps) { printf("Error! Matrix[%05d]=%.8f, ref=%.8f error term is > %E\n", i, h_C[i], (float)(width*height), eps); correct = false; } } printf("%s\n", correct ? "Result = PASS" : "Result = FAIL"); // Free free(h_A); free(h_B); free(h_C); cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); } int main(){ matrixMul(); }
以上是关于cuda编程-矩阵乘法的主要内容,如果未能解决你的问题,请参考以下文章