HDU3853

Posted 自为

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU3853相关的知识,希望对你有一定的参考价值。

Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).

Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.

技术分享


The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS.

 

 

裸的期望DP

dp[i[j]表示当前在i,j位置,到达终点的期望

我们不难看出转移方程为

$dp[i][j]=dp[i][j]*p0+dp[i][j+1]*p1+dp[i+1][j]*p2$

解这个式子有两种方法

1.高斯消元

2.把右边的$dp[i][j]$除到左边

 1 #include<iostream>
 2 #include<cstring>
 3 #include<cstdio>
 4 #include<cstdlib>
 5 #include<cmath>
 6 using namespace std;
 7 const int MAXN=2001;
 8 const int INF=0x7fffff;
 9 double dp[MAXN][MAXN];//走到i,j的期望 
10 struct node
11 {
12     double a,b,c;
13     void clear(){a=b=c=0.0;}
14 }map[MAXN][MAXN];
15 int n,m;
16 const double eps=1e-5;
17 int main()
18 {
19     dp[n][m]=0;
20     while(scanf("%d%d",&n,&m)!=EOF)
21     {
22         memset(dp,0.00,sizeof(dp));
23         dp[n][m]=0;
24         for(int i=1;i<=n;i++)
25             for(int j=1;j<=m;j++)
26                 map[i][j].clear();
27         for(int i=1;i<=n;i++)
28             for(int j=1;j<=m;j++)
29                 scanf("%lf%lf%lf",&map[i][j].a,&map[i][j].b,&map[i][j].c);
30         for(int i=n;i>=1;i--)
31             for(int j=m;j>=1;j--)
32             {
33                 if(i==n&&j==m)    continue;
34                 if(fabs(1.00-map[i][j].a)<eps)    continue;
35                 dp[i][j]=(map[i][j].b*dp[i][j+1]+map[i][j].c*dp[i+1][j]+2.00)/(1.0-map[i][j].a);
36             }    
37         printf("%.3lf\n",dp[1][1]);
38     }
39     
40     
41     return 0;
42 }

 

以上是关于HDU3853的主要内容,如果未能解决你的问题,请参考以下文章

HDU 3853:LOOPS

HDU3853 概率DP

HDU3853

hdu3853 LOOPS(概率DP)

HDU 3853 向下向右找出口问题-期望dp

HDU_3853_概率dp