caffe_ssd学习-用自己的数据做训练

Posted tszs_song

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了caffe_ssd学习-用自己的数据做训练相关的知识,希望对你有一定的参考价值。

几乎没用过linux操作系统,不懂shell编程,linux下shell+windows下UltraEdit勉勉强强生成了train.txt和val.txt期间各种错误辛酸不表,照着examples/imagenet/readme勉勉强强用自己的数据,按imagenet的训练方法,把reference_caffenet训起来了,小笔记本的风扇又开始呼呼呼的转了。

跑了一晚上,小笔记本憋了,还是报错(syncedmem.hpp:25 check failed:*ptr host allocation of size 191102976 failed)猜测还是内存不够的问题,相同的配置方式在台式机上能跑,早晨过来迭代到800次了:

  1 I1101 05:51:24.763746  2942 solver.cpp:243] Iteration 698, loss = 0.246704
  2 I1101 05:51:24.763829  2942 solver.cpp:259]     Train net output #0: loss = 0.246704 (* 1 = 0.246704 loss)
  3 I1101 05:51:24.763837  2942 sgd_solver.cpp:138] Iteration 698, lr = 0.01
  4 I1101 05:52:20.169235  2942 solver.cpp:243] Iteration 699, loss = 0.214295
  5 I1101 05:52:20.169353  2942 solver.cpp:259]     Train net output #0: loss = 0.214295 (* 1 = 0.214295 loss)
  6 I1101 05:52:20.169360  2942 sgd_solver.cpp:138] Iteration 699, lr = 0.01
  7 I1101 05:53:15.372921  2942 solver.cpp:243] Iteration 700, loss = 0.247836
  8 I1101 05:53:15.373028  2942 solver.cpp:259]     Train net output #0: loss = 0.247836 (* 1 = 0.247836 loss)
  9 I1101 05:53:15.373049  2942 sgd_solver.cpp:138] Iteration 700, lr = 0.01
 10 I1101 05:54:11.039271  2942 solver.cpp:243] Iteration 701, loss = 0.24083
 11 I1101 05:54:11.039353  2942 solver.cpp:259]     Train net output #0: loss = 0.24083 (* 1 = 0.24083 loss)
 12 I1101 05:54:11.039361  2942 sgd_solver.cpp:138] Iteration 701, lr = 0.01
 13 I1101 05:55:06.733603  2942 solver.cpp:243] Iteration 702, loss = 0.185371
 14 I1101 05:55:06.733696  2942 solver.cpp:259]     Train net output #0: loss = 0.185371 (* 1 = 0.185371 loss)
 15 I1101 05:55:06.733716  2942 sgd_solver.cpp:138] Iteration 702, lr = 0.01
 16 I1101 05:56:02.576714  2942 solver.cpp:243] Iteration 703, loss = 0.154825
 17 I1101 05:56:02.576802  2942 solver.cpp:259]     Train net output #0: loss = 0.154825 (* 1 = 0.154825 loss)
 18 I1101 05:56:02.576810  2942 sgd_solver.cpp:138] Iteration 703, lr = 0.01
 19 I1101 05:56:58.484149  2942 solver.cpp:243] Iteration 704, loss = 0.222496
 20 I1101 05:56:58.484272  2942 solver.cpp:259]     Train net output #0: loss = 0.222496 (* 1 = 0.222496 loss)
 21 I1101 05:56:58.484292  2942 sgd_solver.cpp:138] Iteration 704, lr = 0.01
 22 I1101 05:57:53.968674  2942 solver.cpp:243] Iteration 705, loss = 0.223804
 23 I1101 05:57:53.968770  2942 solver.cpp:259]     Train net output #0: loss = 0.223804 (* 1 = 0.223804 loss)
 24 I1101 05:57:53.968789  2942 sgd_solver.cpp:138] Iteration 705, lr = 0.01
 25 I1101 05:58:49.514394  2942 solver.cpp:243] Iteration 706, loss = 0.178994
 26 I1101 05:58:49.514477  2942 solver.cpp:259]     Train net output #0: loss = 0.178994 (* 1 = 0.178994 loss)
 27 I1101 05:58:49.514482  2942 sgd_solver.cpp:138] Iteration 706, lr = 0.01
 28 I1101 05:59:44.914528  2942 solver.cpp:243] Iteration 707, loss = 0.231146
 29 I1101 05:59:44.914618  2942 solver.cpp:259]     Train net output #0: loss = 0.231146 (* 1 = 0.231146 loss)
 30 I1101 05:59:44.914625  2942 sgd_solver.cpp:138] Iteration 707, lr = 0.01
 31 I1101 06:00:40.380048  2942 solver.cpp:243] Iteration 708, loss = 0.2585
 32 I1101 06:00:40.380169  2942 solver.cpp:259]     Train net output #0: loss = 0.2585 (* 1 = 0.2585 loss)
 33 I1101 06:00:40.380188  2942 sgd_solver.cpp:138] Iteration 708, lr = 0.01
 34 I1101 06:01:35.776782  2942 solver.cpp:243] Iteration 709, loss = 0.213343
 35 I1101 06:01:35.776881  2942 solver.cpp:259]     Train net output #0: loss = 0.213343 (* 1 = 0.213343 loss)
 36 I1101 06:01:35.776888  2942 sgd_solver.cpp:138] Iteration 709, lr = 0.01
 37 I1101 06:02:31.642572  2942 solver.cpp:243] Iteration 710, loss = 0.209495
 38 I1101 06:02:31.642648  2942 solver.cpp:259]     Train net output #0: loss = 0.209495 (* 1 = 0.209495 loss)
 39 I1101 06:02:31.642654  2942 sgd_solver.cpp:138] Iteration 710, lr = 0.01
 40 I1101 06:03:27.265415  2942 solver.cpp:243] Iteration 711, loss = 0.222363
 41 I1101 06:03:27.265513  2942 solver.cpp:259]     Train net output #0: loss = 0.222363 (* 1 = 0.222363 loss)
 42 I1101 06:03:27.265522  2942 sgd_solver.cpp:138] Iteration 711, lr = 0.01
 43 I1101 06:04:22.963587  2942 solver.cpp:243] Iteration 712, loss = 0.156492
 44 I1101 06:04:22.963680  2942 solver.cpp:259]     Train net output #0: loss = 0.156492 (* 1 = 0.156492 loss)
 45 I1101 06:04:22.963701  2942 sgd_solver.cpp:138] Iteration 712, lr = 0.01
 46 I1101 06:05:18.575387  2942 solver.cpp:243] Iteration 713, loss = 0.23963
 47 I1101 06:05:18.575475  2942 solver.cpp:259]     Train net output #0: loss = 0.23963 (* 1 = 0.23963 loss)
 48 I1101 06:05:18.575484  2942 sgd_solver.cpp:138] Iteration 713, lr = 0.01
 49 I1101 06:06:13.736877  2942 solver.cpp:243] Iteration 714, loss = 0.198127
 50 I1101 06:06:13.736976  2942 solver.cpp:259]     Train net output #0: loss = 0.198127 (* 1 = 0.198127 loss)
 51 I1101 06:06:13.736984  2942 sgd_solver.cpp:138] Iteration 714, lr = 0.01
 52 I1101 06:07:09.226873  2942 solver.cpp:243] Iteration 715, loss = 0.211781
 53 I1101 06:07:09.226959  2942 solver.cpp:259]     Train net output #0: loss = 0.211781 (* 1 = 0.211781 loss)
 54 I1101 06:07:09.226966  2942 sgd_solver.cpp:138] Iteration 715, lr = 0.01
 55 I1101 06:08:04.730242  2942 solver.cpp:243] Iteration 716, loss = 0.250581
 56 I1101 06:08:04.730329  2942 solver.cpp:259]     Train net output #0: loss = 0.250581 (* 1 = 0.250581 loss)
 57 I1101 06:08:04.730335  2942 sgd_solver.cpp:138] Iteration 716, lr = 0.01
 58 I1101 06:09:00.274008  2942 solver.cpp:243] Iteration 717, loss = 0.213366
 59 I1101 06:09:00.274089  2942 solver.cpp:259]     Train net output #0: loss = 0.213366 (* 1 = 0.213366 loss)
 60 I1101 06:09:00.274096  2942 sgd_solver.cpp:138] Iteration 717, lr = 0.01
 61 I1101 06:09:55.551977  2942 solver.cpp:243] Iteration 718, loss = 0.229803
 62 I1101 06:09:55.552062  2942 solver.cpp:259]     Train net output #0: loss = 0.229803 (* 1 = 0.229803 loss)
 63 I1101 06:09:55.552070  2942 sgd_solver.cpp:138] Iteration 718, lr = 0.01
 64 I1101 06:10:51.295166  2942 solver.cpp:243] Iteration 719, loss = 0.182805
 65 I1101 06:10:51.295260  2942 solver.cpp:259]     Train net output #0: loss = 0.182805 (* 1 = 0.182805 loss)
 66 I1101 06:10:51.295281  2942 sgd_solver.cpp:138] Iteration 719, lr = 0.01
 67 I1101 06:11:46.892568  2942 solver.cpp:243] Iteration 720, loss = 0.174111
 68 I1101 06:11:46.892639  2942 solver.cpp:259]     Train net output #0: loss = 0.174111 (* 1 = 0.174111 loss)
 69 I1101 06:11:46.892647  2942 sgd_solver.cpp:138] Iteration 720, lr = 0.01
 70 I1101 06:12:42.373394  2942 solver.cpp:243] Iteration 721, loss = 0.159915
 71 I1101 06:12:42.373476  2942 solver.cpp:259]     Train net output #0: loss = 0.159915 (* 1 = 0.159915 loss)
 72 I1101 06:12:42.373482  2942 sgd_solver.cpp:138] Iteration 721, lr = 0.01
 73 I1101 06:13:37.606986  2942 solver.cpp:243] Iteration 722, loss = 0.194667
 74 I1101 06:13:37.607105  2942 solver.cpp:259]     Train net output #0: loss = 0.194667 (* 1 = 0.194667 loss)
 75 I1101 06:13:37.607125  2942 sgd_solver.cpp:138] Iteration 722, lr = 0.01
 76 I1101 06:14:32.550334  2942 solver.cpp:243] Iteration 723, loss = 0.192629
 77 I1101 06:14:32.550433  2942 solver.cpp:259]     Train net output #0: loss = 0.192629 (* 1 = 0.192629 loss)
 78 I1101 06:14:32.550442  2942 sgd_solver.cpp:138] Iteration 723, lr = 0.01
 79 I1101 06:15:27.603406  2942 solver.cpp:243] Iteration 724, loss = 0.189146
 80 I1101 06:15:27.603489  2942 solver.cpp:259]     Train net output #0: loss = 0.189146 (* 1 = 0.189146 loss)
 81 I1101 06:15:27.603497  2942 sgd_solver.cpp:138] Iteration 724, lr = 0.01
 82 I1101 06:16:22.925781  2942 solver.cpp:243] Iteration 725, loss = 0.2837
 83 I1101 06:16:22.925882  2942 solver.cpp:259]     Train net output #0: loss = 0.2837 (* 1 = 0.2837 loss)
 84 I1101 06:16:22.925902  2942 sgd_solver.cpp:138] Iteration 725, lr = 0.01
 85 I1101 06:17:18.304738  2942 solver.cpp:243] Iteration 726, loss = 0.22247
 86 I1101 06:17:18.304850  2942 solver.cpp:259]     Train net output #0: loss = 0.22247 (* 1 = 0.22247 loss)
 87 I1101 06:17:18.304870  2942 sgd_solver.cpp:138] Iteration 726, lr = 0.01
 88 I1101 06:18:13.775182  2942 solver.cpp:243] Iteration 727, loss = 0.22343
 89 I1101 06:18:13.775266  2942 solver.cpp:259]     Train net output #0: loss = 0.22343 (* 1 = 0.22343 loss)
 90 I1101 06:18:13.775274  2942 sgd_solver.cpp:138] Iteration 727, lr = 0.01
 91 I1101 06:19:09.986521  2942 solver.cpp:243] Iteration 728, loss = 0.208602
 92 I1101 06:19:09.986620  2942 solver.cpp:259]     Train net output #0: loss = 0.208602 (* 1 = 0.208602 loss)
 93 I1101 06:19:09.986629  2942 sgd_solver.cpp:138] Iteration 728, lr = 0.01
 94 I1101 06:20:05.922881  2942 solver.cpp:243] Iteration 729, loss = 0.179899
 95 I1101 06:20:05.922969  2942 solver.cpp:259]     Train net output #0: loss = 0.179899 (* 1 = 0.179899 loss)
 96 I1101 06:20:05.922976  2942 sgd_solver.cpp:138] Iteration 729, lr = 0.01
 97 I1101 06:21:01.568653  2942 solver.cpp:243] Iteration 730, loss = 0.25694
 98 I1101 06:21:01.568696  2942 solver.cpp:259]     Train net output #0: loss = 0.25694 (* 1 = 0.25694 loss)
 99 I1101 06:21:01.568701  2942 sgd_solver.cpp:138] Iteration 730, lr = 0.01
100 I1101 06:21:57.061185  2942 solver.cpp:243] Iteration 731, loss = 0.184521
101 I1101 06:21:57.061267  2942 solver.cpp:259]     Train net output #0: loss = 0.184521 (* 1 = 0.184521 loss)
102 I1101 06:21:57.061275  2942 sgd_solver.cpp:138] Iteration 731, lr = 0.01
103 I1101 06:22:52.319211  2942 solver.cpp:243] Iteration 732, loss = 0.214978
104 I1101 06:22:52.319324  2942 solver.cpp:259]     Train net output #0: loss = 0.214978 (* 1 = 0.214978 loss)
105 I1101 06:22:52.319332  2942 sgd_solver.cpp:138] Iteration 732, lr = 0.01
106 I1101 06:23:47.861532  2942 solver.cpp:243] Iteration 733, loss = 0.166787
107 I1101 06:23:47.861619  2942 solver.cpp:259]     Train net output #0: loss = 0.166787 (* 1 = 0.166787 loss)
108 I1101 06:23:47.861626  2942 sgd_solver.cpp:138] Iteration 733, lr = 0.01
109 I1101 06:24:43.277447  2942 solver.cpp:243] Iteration 734, loss = 0.245544
110 I1101 06:24:43.277559  2942 solver.cpp:259]     Train net output #0: loss = 0.245544 (* 1 = 0.245544 loss)
111 I1101 06:24:43.277565  2942 sgd_solver.cpp:138] Iteration 734, lr = 0.01
112 I1101 06:25:38.757647  2942 solver.cpp:243] Iteration 735, loss = 0.200957
113 I1101 06:25:38.757745  2942 solver.cpp:259]     Train net output #0: loss = 0.200957 (* 1 = 0.200957 loss)
114 I1101 06:25:38.757766  2942 sgd_solver.cpp:138] Iteration 735, lr = 0.01
115 I1101 06:26:34.590348  2942 solver.cpp:243] Iteration 736, loss = 0.206711
116 I1101 06:26:34.590428  2942 solver.cpp:259]     Train net output #0: loss = 0.206711 (* 1 = 0.206711 loss)
117 I1101 06:26:34.590435  2942 sgd_solver.cpp:138] Iteration 736, lr = 0.01
118 I1101 06:27:30.571000  2942 solver.cpp:243] Iteration 737, loss = 0.190287
119 I1101 06:27:30.571082  2942 solver.cpp:259]     Train net output #0: loss = 0.190287 (* 1 = 0.190287 loss)
120 I1101 06:27:30.571089  2942 sgd_solver.cpp:138] Iteration 737, lr = 0.01
121 I1101 06:28:26.604413  2942 solver.cpp:243] Iteration 738, loss = 0.27267
122 I1101 06:28:26.604490  2942 solver.cpp:259]     Train net output #0: loss = 0.27267 (* 1 = 0.27267 loss)
123 I1101 06:28:26.604509  2942 sgd_solver.cpp:138] Iteration 738, lr = 0.01
124 I1101 06:29:22.135064  2942 solver.cpp:243] Iteration 739, loss = 0.259939
125 I1101 06:29:22.135135  2942 solver.cpp:259]     Train net output #0: loss = 0.259939 (* 1 = 0.259939 loss)
126 I1101 06:29:22.135143  2942 sgd_solver.cpp:138] Iteration 739, lr = 0.01
127 I1101 06:30:17.477607  2942 solver.cpp:243] Iteration 740, loss = 0.180358
128 I1101 06:30:17.477692  2942 solver.cpp:259]     Train net output #0: loss = 0.180358 (* 1 = 0.180358 loss)
129 I1101 06:30:17.477699  2942 sgd_solver.cpp:138] Iteration 740, lr = 0.01
130 I1101 06:31:12.490366  2942 solver.cpp:243] Iteration 741, loss = 0.210995
131 I1101 06:31:12.490449  2942 solver.cpp:259]     Train net output #0: loss = 0.210995 (* 1 = 0.210995 loss)
132 I1101 06:31:12.490468  2942 sgd_solver.cpp:138] Iteration 741, lr = 0.01
133 I1101 06:32:07.610287  2942 solver.cpp:243] Iteration 742, loss = 0.240796
134 I1101 06:32:07.610374  2942 solver.cpp:259]     Train net output #0: loss = 0.240796 (* 1 = 0.240796 loss)
135 I1101 06:32:07.610383  2942 sgd_solver.cpp:138] Iteration 742, lr = 0.01
136 I1101 06:33:02.604507  2942 solver.cpp:243] Iteration 743, loss = 0.242676
137 I1101 06:33:02.604640  2942 solver.cpp:259]     Train net output #0: loss = 0.242676 (* 1 = 0.242676 loss)
138 I1101 06:33:02.604648  2942 sgd_solver.cpp:138] Iteration 743, lr = 0.01
139 I1101 06:33:57.804772  2942 solver.cpp:243] Iteration 744, loss = 0.213677
140 I1101 06:33:57.804877  2942 solver.cpp:259]     Train net output #0: loss = 0.213677 (* 1 = 0.213677 loss)
141 I1101 06:33:57.804898  2942 sgd_solver.cpp:138] Iteration 744, lr = 0.01
142 I1101 06:34:53.220233  2942 solver.cpp:243] Iteration 745, loss = 0.164903
143 I1101 06:34:53.220304  2942 solver.cpp:259]     Train net output #0: loss = 0.164903 (* 1 = 0.164903 loss)
144 I1101 06:34:53.220310  2942 sgd_solver.cpp:138] Iteration 745, lr = 0.01
145 I1101 06:35:48.960155  2942 solver.cpp:243] Iteration 746, loss = 0.229432
146 I1101 06:35:48.960199  2942 solver.cpp:259]     Train net output #0: loss = 0.229432 (* 1 = 0.229432 loss)
147 I1101 06:35:48.960220  2942 sgd_solver.cpp:138] Iteration 746, lr = 0.01
148 I1101 06:36:44.706097  2942 solver.cpp:243] Iteration 747, loss = 0.164644
149 I1101 06:36:44.706193  2942 solver.cpp:259]     Train net output #0: loss = 0.164644 (* 1 = 0.164644 loss)
150 I1101 06:36:44.706212  2942 sgd_solver.cpp:138] Iteration 747, lr = 0.01
151 I1101 06:37:40.333650  2942 solver.cpp:243] Iteration 748, loss = 0.190379
152 I1101 06:37:40.333721  2942 solver.cpp:259]     Train net output #0: loss = 0.190379 (* 1 = 0.190379 loss)
153 I1101 06:37:40.333729  2942 sgd_solver.cpp:138] Iteration 748, lr = 0.01
154 I1101 06:38:35.466141  2942 solver.cpp:243] Iteration 749, loss = 0.19267
155 I1101 06:38:35.466250  2942 solver.cpp:259]     Train net output #0: loss = 0.19267 (* 1 = 0.19267 loss)
156 I1101 06:38:35.466259  2942 sgd_solver.cpp:138] Iteration 749, lr = 0.01
157 I1101 06:39:30.480350  2942 solver.cpp:243] Iteration 750, loss = 0.183797
158 I1101 06:39:30.480445  2942 solver.cpp:259]     Train net output #0: loss = 0.183797 (* 1 = 0.183797 loss)
159 I1101 06:39:30.480453  2942 sgd_solver.cpp:138] Iteration 750, lr = 0.01
160 I1101 06:40:25.350738  2942 solver.cpp:243] Iteration 751, loss = 0.159131
161 I1101 06:40:25.350818  2942 solver.cpp:259]     Train net output #0: loss = 0.159131 (* 1 = 0.159131 loss)
162 I1101 06:40:25.350826  2942 sgd_solver.cpp:138] Iteration 751, lr = 0.01
163 I1101 06:41:20.152151  2942 solver.cpp:243] Iteration 752, loss = 0.228896
164 I1101 06:41:20.152248  2942 solver.cpp:259]     Train net output #0: loss = 0.228896 (* 1 = 0.228896 loss)
165 I1101 06:41:20.152256  2942 sgd_solver.cpp:138] Iteration 752, lr = 0.01
166 I1101 06:42:15.041281  2942 solver.cpp:243] Iteration 753, loss = 0.18304
167 I1101 06:42:15.041394  2942 solver.cpp:259]     Train net output #0: loss = 0.18304 (* 1 = 0.18304 loss)
168 I1101 06:42:15.041402  2942 sgd_solver.cpp:138] Iteration 753, lr = 0.01
169 I1101 06:43:10.346072  2942 solver.cpp:243] Iteration 754, loss = 0.156069
170 I1101 06:43:10.346170  2942 solver.cpp:259]     Train net output #0: loss = 0.156069 (* 1 = 0.156069 loss)
171 I1101 06:43:10.346177  2942 sgd_solver.cpp:138] Iteration 754, lr = 0.01
172 I1101 06:44:05.998122  2942 solver.cpp:243] Iteration 755, loss = 0.182228
173 I1101 06:44:05.998195  2942 solver.cpp:259]     Train net output #0: loss = 0.182228 (* 1 = 0.182228 loss)
174 I1101 06:44:05.998214  2942 sgd_solver.cpp:138] Iteration 755, lr = 0.01
175 I1101 06:45:01.561781  2942 solver.cpp:243] Iteration 756, loss = 0.216226
176 I1101 06:45:01.561890  2942 solver.cpp:259]     Train net output #0: loss = 0.216226 (* 1 = 0.216226 loss)
177 I1101 06:45:01.561898  2942 sgd_solver.cpp:138] Iteration 756, lr = 0.01
178 I1101 06:45:56.949368  2942 solver.cpp:243] Iteration 757, loss = 0.18065
179 I1101 06:45:56.949447  2942 solver.cpp:259]     Train net output #0: loss = 0.18065 (* 1 = 0.18065 loss)
180 I1101 06:45:56.949455  2942 sgd_solver.cpp:138] Iteration 757, lr = 0.01
181 I1101 06:46:52.247467  2942 solver.cpp:243] Iteration 758, loss = 0.182474
182 I1101 06:46:52.247581  2942 solver.cpp:259]     Train net output #0: loss = 0.182474 (* 1 = 0.182474 loss)
183 I1101 06:46:52.247588  2942 sgd_solver.cpp:138] Iteration 758, lr = 0.01
184 I1101 06:47:47.383482  2942 solver.cpp:243] Iteration 759, loss = 0.212113
185 I1101 06:47:47.383568  2942 solver.cpp:259]     Train net output #0: loss = 0.212113 (* 1 = 0.212113 loss)
186 I1101 06:47:47.383574  2942 sgd_solver.cpp:138] Iteration 759, lr = 0.01
187 I1101 06:48:42.570590  2942 solver.cpp:243] Iteration 760, loss = 0.206157
188 I1101 06:48:42.570747  2942 solver.cpp:259]     Train net output #0: loss = 0.206157 (* 1 = 0.206157 loss)
189 I1101 06:48:42.570770  2942 sgd_solver.cpp:138] Iteration 760, lr = 0.01
190 I1101 06:49:37.778367  2942 solver.cpp:243] Iteration 761, loss = 0.201435
191 I1101 06:49:37.778491  2942 solver.cpp:259]     Train net output #0: loss = 0.201435 (* 1 = 0.201435 loss)
192 I1101 06:49:37.778497  2942 sgd_solver.cpp:138] Iteration 761, lr = 0.01
193 I1101 06:50:32.906011  2942 solver.cpp:243] Iteration 762, loss = 0.232756
194 I1101 06:50:32.906136  2942 solver.cpp:259]     Train net output #0: loss = 0.232756 (* 1 = 0.232756 loss)
195 I1101 06:50:32.906154  2942 sgd_solver.cpp:138] Iteration 762, lr = 0.01
196 I1101 06:51:28.507810  2942 solver.cpp:243] Iteration 763, loss = 0.239409
197 I1101 06:51:28.507935  2942 solver.cpp:259]     Train net output #0: loss = 0.239409 (* 1 = 0.239409 loss)
198 I1101 06:51:28.507941  2942 sgd_solver.cpp:138] Iteration 763, lr = 0.01
199 I1101 06:52:24.117368  2942 solver.cpp:243] Iteration 764, loss = 0.210396
200 I1101 06:52:24.117455  2942 solver.cpp:259]     Train net output #0: loss = 0.210396 (* 1 = 0.210396 loss)
201 I1101 06:52:24.117462  2942 sgd_solver.cpp:138] Iteration 764, lr = 0.01
202 I1101 06:53:19.973865  2942 solver.cpp:243] Iteration 765, loss = 0.213389
203 I1101 06:53:19.973986  2942 solver.cpp:259]     Train net output #0: loss = 0.213389 (* 1 = 0.213389 loss)
204 I1101 06:53:19.973994  2942 sgd_solver.cpp:138] Iteration 765, lr = 0.01
205 I1101 06:54:15.469249  2942 solver.cpp:243] Iteration 766, loss = 0.176683
206 I1101 06:54:15.469341  2942 solver.cpp:259]     Train net output #0: loss = 0.176683 (* 1 = 0.176683 loss)
207 I1101 06:54:15.469347  2942 sgd_solver.cpp:138] Iteration 766, lr = 0.01
208 I1101 06:55:10.433040  2942 solver.cpp:243] Iteration 767, loss = 0.175243
209 I1101 06:55:10.433122  2942 solver.cpp:259]     Train net output #0: loss = 0.175243 (* 1 = 0.175243 loss)
210 I1101 06:55:10.433130  2942 sgd_solver.cpp:138] Iteration 767, lr = 0.01
211 I1101 06:56:05.749205  2942 solver.cpp:243] Iteration 768, loss = 0.240504
212 I1101 06:56:05.749297  2942 solver.cpp:259]     Train net output #0: loss = 0.240504 (* 1 = 0.240504 loss)
213 I1101 06:56:05.749305  2942 sgd_solver.cpp:138] Iteration 768, lr = 0.01
214 I1101 06:57:00.961922  2942 solver.cpp:243] Iteration 769, loss = 0.196663
215 I1101 06:57:00.962010  2942 solver.cpp:259]     Train net output #0: loss = 0.196663 (* 1 = 0.196663 loss)
216 I1101 06:57:00.962018  2942 sgd_solver.cpp:138] Iteration 769, lr = 0.01
217 I1101 06:57:56.258919  2942 solver.cpp:243] Iteration 770, loss = 0.180423
218 I1101 06:57:56.259018  2942 solver.cpp:259]     Train net output #0: loss = 0.180423 (* 1 = 0.180423 loss)
219 I1101 06:57:56.259026  2942 sgd_solver.cpp:138] Iteration 770, lr = 0.01
220 I1101 06:58:51.617398  2942 solver.cpp:243] Iteration 771, loss = 0.175648
221 I1101 06:58:51.617507  2942 solver.cpp:259]     Train net output #0: loss = 0.175648 (* 1 = 0.175648 loss)
222 I1101 06:58:51.617527  2942 sgd_solver.cpp:138] Iteration 771, lr = 0.01
223 I1101 06:59:47.129223  2942 solver.cpp:243] Iteration 772, loss = 0.217475
224 I1101 06:59:47.129295  2942 solver.cpp:259]     Train net output #0: loss = 0.217475 (* 1 = 0.217475 loss)
225 I1101 06:59:47.129302  2942 sgd_solver.cpp:138] Iteration 772, lr = 0.01
226 I1101 07:00:42.674275  2942 solver.cpp:243] Iteration 773, loss = 0.172873
227 I1101 07:00:42.674332  2942 solver.cpp:259]     Train net output #0: loss = 0.172873 (* 1 = 0.172873 loss)
228 I1101 07:00:42.674340  2942 sgd_solver.cpp:138] Iteration 773, lr = 0.01
229 I1101 07:01:38.446044  2942 solver.cpp:243] Iteration 774, loss = 0.20526
230 I1101 07:01:38.446117  2942 solver.cpp:259]     Train net output #0: loss = 0.20526 (* 1 = 0.20526 loss)
231 I1101 07:01:38.446125  2942 sgd_solver.cpp:138] Iteration 774, lr = 0.01
232 I1101 07:02:33.842972  2942 solver.cpp:243] Iteration 775, loss = 0.164669
233 I1101 07:02:33.843098  2942 solver.cpp:259]     Train net output #0: loss = 0.164669 (* 1 = 0.164669 loss)
234 I1101 07:02:33.843106  2942 sgd_solver.cpp:138] Iteration 775, lr = 0.01
235 I1101 07:03:28.843194  2942 solver.cpp:243] Iteration 776, loss = 0.123786
236 I1101 07:03:28.843338  2942 solver.cpp:259]     Train net output #0: loss = 0.123786 (* 1 = 0.123786 loss)
237 I1101 07:03:28.843358  2942 sgd_solver.cpp:138] Iteration 776, lr = 0.01
238 I1101 07:04:24.223012  2942 solver.cpp:243] Iteration 777, loss = 0.152694
239 I1101 07:04:24.223104  2942 solver.cpp:259]     Train net output #0: loss = 0.152694 (* 1 = 0.152694 loss)
240 I1101 07:04:24.223112  2942 sgd_solver.cpp:138] Iteration 777, lr = 0.01
241 I1101 07:05:19.547505  2942 solver.cpp:243] Iteration 778, loss = 0.16592
242 I1101 07:05:19.547611  2942 solver.cpp:259]     Train net output #0: loss = 0.16592 (* 1 = 0.16592 loss)
243 I1101 07:05:19.547618  2942 sgd_solver.cpp:138] Iteration 778, lr = 0.01
244 I1101 07:06:14.945013  2942 solver.cpp:243] Iteration 779, loss = 0.131236
245 I1101 07:06:14.945102  2942 solver.cpp:259]     Train net output #0: loss = 0.131236 (* 1 = 0.131236 loss)
246 I1101 07:06:14.945109  2942 sgd_solver.cpp:138] Iteration 779, lr = 0.01
247 I1101 07:07:10.377750  2942 solver.cpp:243] Iteration 780, loss = 0.180781
248 I1101 07:07:10.377817  2942 solver.cpp:259]     Train net output #0: loss = 0.180781 (* 1 = 0.180781 loss)
249 I1101 07:07:10.377825  2942 sgd_solver.cpp:138] Iteration 780, lr = 0.01
250 I1101 07:08:06.142426  2942 solver.cpp:243] Iteration 781, loss = 0.200052
251 I1101 07:08:06.142537  2942 solver.cpp:259]     Train net output #0: loss = 0.200052 (* 1 = 0.200052 loss)
252 I1101 07:08:06.142545  2942 sgd_solver.cpp:138] Iteration 781, lr = 0.01
253 I1101 07:09:01.782235  2942 solver.cpp:243] Iteration 782, loss = 0.166285
254 I1101 07:09:01.782305  2942 solver.cpp:259]     Train net output #0: loss = 0.166285 (* 1 = 0.166285 loss)
255 I1101 07:09:01.782312  2942 sgd_solver.cpp:138] Iteration 782, lr = 0.01
256 I1101 07:09:57.450909  2942 solver.cpp:243] Iteration 783, loss = 0.204904
257 I1101 07:09:57.451010  2942 solver.cpp:259]     Train net output #0: loss = 0.204904 (* 1 = 0.204904 loss)
258 I1101 07:09:57.451030  2942 sgd_solver.cpp:138] Iteration 783, lr = 0.01
259 I1101 07:10:52.858960  2942 solver.cpp:243] Iteration 784, loss = 0.143823
260 I1101 07:10:52.859050  2942 solver.cpp:259]     Train net output #0: loss = 0.143823 (* 1 = 0.143823 loss)
261 I1101 07:10:52.859056  2942 sgd_solver.cpp:138] Iteration 784, lr = 0.01
262 I1101 07:11:48.006325  2942 solver.cpp:243] Iteration 785, loss = 0.158639
263 I1101 07:11:48.006422  2942 solver.cpp:259]     Train net output #0: loss = 0.158639 (* 1 = 0.158639 loss)
264 I1101 07:11:48.006443  2942 sgd_solver.cpp:138] Iteration 785, lr = 0.01
265 I1101 07:12:43.566946  2942 solver.cpp:243] Iteration 786, loss = 0.157527
266 I1101 07:12:43.567029  2942 solver.cpp:259]     Train net output #0: loss = 0.157527 (* 1 = 0.157527 loss)
267 I1101 07:12:43.567036  2942 sgd_solver.cpp:138] Iteration 786, lr = 0.01
268 I1101 07:13:38.747087  2942 solver.cpp:243] Iteration 787, loss = 0.229001
269 I1101 07:13:38.747169  2942 solver.cpp:259]     Train net output #0: loss = 0.229001 (* 1 = 0.229001 loss)
270 I1101 07:13:38.747176  2942 sgd_solver.cpp:138] Iteration 787, lr = 0.01
271 I1101 07:14:34.269659  2942 solver.cpp:243] Iteration 788, loss = 0.166042
272 I1101 07:14:34.269748  2942 solver.cpp:259]     Train net output #0: loss = 0.166042 (* 1 = 0.166042 loss)
273 I1101 07:14:34.269755  2942 sgd_solver.cpp:138] Iteration 788, lr = 0.01
274 I1101 07:15:29.537577  2942 solver.cpp:243] Iteration 789, loss = 0.212571
275 I1101 07:15:29.537619  2942 solver.cpp:259]     Train net output #0: loss = 0.212571 (* 1 = 0.212571 loss)
276 I1101 07:15:29.537626  2942 sgd_solver.cpp:138] Iteration 789, lr = 0.01
277 I1101 07:16:25.185962  2942 solver.cpp:243] Iteration 790, loss = 0.177549
278 I1101 07:16:25.186005  2942 solver.cpp:259]     Train net output #0: loss = 0.177549 (* 1 = 0.177549 loss)
279 I1101 07:16:25.186012  2942 sgd_solver.cpp:138] Iteration 790, lr = 0.01
280 I1101 07:17:20.694247  2942 solver.cpp:243] Iteration 791, loss = 0.219427
281 I1101 07:17:20.694320  2942 solver.cpp:259]     Train net output #0: loss = 0.219427 (* 1 = 0.219427 loss)
282 I1101 07:17:20.694329  2942 sgd_solver.cpp:138] Iteration 791, lr = 0.01
283 I1101 07:18:16.576424  2942 solver.cpp:243] Iteration 792, loss = 0.184091
284 I1101 07:18:16.576484  2942 solver.cpp:259]     Train net output #0: loss = 0.184091 (* 1 = 0.184091 loss)
285 I1101 07:18:16.576506  2942 sgd_solver.cpp:138] Iteration 792, lr = 0.01
286 I1101 07:19:11.834085  2942 solver.cpp:243] Iteration 793, loss = 0.182248
287 I1101 07:19:11.834184  2942 solver.cpp:259]     Train net output #0: loss = 0.182248 (* 1 = 0.182248 loss)
288 I1101 07:19:11.834192  2942 sgd_solver.cpp:138] Iteration 793, lr = 0.01
289 I1101 07:20:06.932883  2942 solver.cpp:243] Iteration 794, loss = 0.138351
290 I1101 07:20:06.932976  2942 solver.cpp:259]     Train net output #0: loss = 0.138351 (* 1 = 0.138351 loss)
291 I1101 07:20:06.932982  2942 sgd_solver.cpp:138] Iteration 794, lr = 0.01
292 I1101 07:21:02.166926  2942 solver.cpp:243] Iteration 795, loss = 0.131442
293 I1101 07:21:02.167026  2942 solver.cpp:259]     Train net output #0: loss = 0.131442 (* 1 = 0.131442 loss)
294 I1101 07:21:02.167033  2942 sgd_solver.cpp:138] Iteration 795, lr = 0.01
295 I1101 07:21:57.211791  2942 solver.cpp:243] Iteration 796, loss = 0.177292
296 I1101 07:21:57.211889  2942 solver.cpp:259]     Train net output #0: loss = 0.177292 (* 1 = 0.177292 loss)
297 I1101 07:21:57.211910  2942 sgd_solver.cpp:138] Iteration 796, lr = 0.01
298 I1101 07:22:52.467435  2942 solver.cpp:243] Iteration 797, loss = 0.163172
299 I1101 07:22:52.467532  2942 solver.cpp:259]     Train net output #0: loss = 0.163172 (* 1 = 0.163172 loss)
300 I1101 07:22:52.467540  2942 sgd_solver.cpp:138] Iteration 797, lr = 0.01
301 I1101 07:23:47.584058  2942 solver.cpp:243] Iteration 798, loss = 0.1557
302 I1101 07:23:47.584126  2942 solver.cpp:259]     Train net output #0: loss = 0.1557 (* 1 = 0.1557 loss)
303 I1101 07:23:47.584133  2942 sgd_solver.cpp:138] Iteration 798, lr = 0.01
304 I1101 07:24:42.980532  2942 solver.cpp:243] Iteration 799, loss = 0.158722
305 I1101 07:24:42.980628  2942 solver.cpp:259]     Train net output #0: loss = 0.158722 (* 1 = 0.158722 loss)
306 I1101 07:24:42.980649  2942 sgd_solver.cpp:138] Iteration 799, lr = 0.01
307 I1101 07:25:38.133345  2942 solver.cpp:243] Iteration 800, loss = 0.193614
308 I1101 07:25:38.133430  2942 solver.cpp:259]     Train net output #0: loss = 0.193614 (* 1 = 0.193614 loss)
309 I1101 07:25:38.133437  2942 sgd_solver.cpp:138] Iteration 800, lr = 0.01
310 I1101 07:26:33.691634  2942 solver.cpp:243] Iteration 801, loss = 0.16334
311 I1101 07:26:33.691720  2942 solver.cpp:259]     Train net output #0: loss = 0.16334 (* 1 = 0.16334 loss)
312 I1101 07:26:33.691726  2942 sgd_solver.cpp:138] Iteration 801, lr = 0.01
313 I1101 07:27:28.735807  2942 solver.cpp:243] Iteration 802, loss = 0.135363
314 I1101 07:27:28.735888  2942 solver.cpp:259]     Train net output #0: loss = 0.135363 (* 1 = 0.135363 loss)
315 I1101 07:27:28.735895  2942 sgd_solver.cpp:138] Iteration 802, lr = 0.01
316 I1101 07:28:23.747395  2942 solver.cpp:243] Iteration 803, loss = 0.201854
317 I1101 07:28:23.747498  2942 solver.cpp:259]     Train net output #0: loss = 0.201854 (* 1 = 0.201854 loss)
318 I1101 07:28:23.747516  2942 sgd_solver.cpp:138] Iteration 803, lr = 0.01
319 I1101 07:29:18.985882  2942 solver.cpp:243] Iteration 804, loss = 0.152548
320 I1101 07:29:18.985962  2942 solver.cpp:259]     Train net output #0: loss = 0.152548 (* 1 = 0.152548 loss)
321 I1101 07:29:18.985970  2942 sgd_solver.cpp:138] Iteration 804, lr = 0.01
322 I1101 07:30:14.139812  2942 solver.cpp:243] Iteration 805, loss = 0.173412
323 I1101 07:30:14.139940  2942 solver.cpp:259]     Train net output #0: loss = 0.173412 (* 1 = 0.173412 loss)
324 I1101 07:30:14.139960  2942 sgd_solver.cpp:138] Iteration 805, lr = 0.01
325 I1101 07:31:09.495632  2942 solver.cpp:243] Iteration 806, loss = 0.185132
326 I1101 07:31:09.495724  2942 solver.cpp:259]     Train net output #0: loss = 0.185132 (* 1 = 0.185132 loss)
327 I1101 07:31:09.495733  2942 sgd_solver.cpp:138] Iteration 806, lr = 0.01
328 I1101 07:32:04.826592  2942 solver.cpp:243] Iteration 807, loss = 0.172771
329 I1101 07:32:04.826647  2942 solver.cpp:259]     Train net output #0: loss = 0.172771 (* 1 = 0.172771 loss)
330 I1101 07:32:04.826653  2942 sgd_solver.cpp:138] Iteration 807, lr = 0.01
331 I1101 07:33:00.284266  2942 solver.cpp:243] Iteration 808, loss = 0.177978
332 I1101 07:33:00.284364  2942 solver.cpp:259]     Train net output #0: loss = 0.177978 (* 1 = 0.177978 loss)
333 I1101 07:33:00.284373  2942 sgd_solver.cpp:138] Iteration 808, lr = 0.01
334 I1101 07:33:55.824797  2942 solver.cpp:243] Iteration 809, loss = 0.130759
335 I1101 07:33:55.824872  2942 solver.cpp:259]     Train net output #0: loss = 0.130759 (* 1 = 0.130759 loss)
336 I1101 07:33:55.824880  2942 sgd_solver.cpp:138] Iteration 809, lr = 0.01
337 I1101 07:34:50.941251  2942 solver.cpp:243] Iteration 810, loss = 0.257597
338 I1101 07:34:50.941334  2942 solver.cpp:259]     Train net output #0: loss = 0.257597 (* 1 = 0.257597 loss)
339 I1101 07:34:50.941356  2942 sgd_solver.cpp:138] Iteration 810, lr = 0.01
340 I1101 07:35:45.703112  2942 solver.cpp:243] Iteration 811, loss = 0.2065
341 I1101 07:35:45.703183  2942 solver.cpp:259]     Train net output #0: loss = 0.2065 (* 1 = 0.2065 loss)
342 I1101 07:35:45.703191  2942 sgd_solver.cpp:138] Iteration 811, lr = 0.01
343 I1101 07:36:40.185742  2942 solver.cpp:243] Iteration 812, loss = 0.197094
344 I1101 07:36:40.185852  2942 solver.cpp:259]     Train net output #0: loss = 0.197094 (* 1 = 0.197094 loss)
345 I1101 07:36:40.185858  2942 sgd_solver.cpp:138] Iteration 812, lr = 0.01
346 I1101 07:37:35.029402  2942 solver.cpp:243] Iteration 813, loss = 0.122207
347 I1101 07:37:35.029482  2942 solver.cpp:259]     Train net output #0: loss = 0.122207 (* 1 = 0.122207 loss)
348 I1101 07:37:35.029489  2942 sgd_solver.cpp:138] Iteration 813, lr = 0.01
349 I1101 07:38:30.204357  2942 solver.cpp:243] Iteration 814, loss = 0.162976
350 I1101 07:38:30.204438  2942 solver.cpp:259]     Train net output #0: loss = 0.162976 (* 1 = 0.162976 loss)
351 I1101 07:38:30.204445  2942 sgd_solver.cpp:138] Iteration 814, lr = 0.01
352 I1101 07:39:25.489464  2942 solver.cpp:243] Iteration 815, loss = 0.218391
353 以上是关于caffe_ssd学习-用自己的数据做训练的主要内容,如果未能解决你的问题,请参考以下文章

物体检测算法 SSD 的训练和测试

深度学习:使用UNet做图像语义分割,训练自己制作的数据集,详细教程

自己动手实现深度学习框架-3 自动分批训练, 缓解过拟合

用深度学习做命名实体识别——模型训练

深度学习100例 | 第53天:用YOLOv5训练自己的数据集(超级详细完整版)

深度学习100例 | 第53天:用YOLOv5训练自己的数据集(超级详细完整版)