numpy.stack vs concatenate vs hstack vs vstack
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了numpy.stack vs concatenate vs hstack vs vstack相关的知识,希望对你有一定的参考价值。
官方文档的解释如下:
stack:
Join a sequence of arrays along a new axis
concatenate:
Join a sequence of arrays along a existing axis
因此stack 是在新轴axis=n上加入矩阵,已有的axis>=n往后挪动,譬如以前的axis=n挪动到axis=n+1上
而concatenate是在已有的轴axis=n上加入矩阵。
stack 例子:
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.stack((a, b))
array([[1, 2, 3],
[2, 3, 4]])
concatenate例子:
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.concatenate((a, b))
array([1, 2, 3, 2, 3, 4])
hstack:
Equivalent to np.cancatenate(tup, axis=1), if tup contains arrays that are at least 2-dimensional.
vstack:
Equivalent to np.cancatenate(tup, axis=0), if tup contains arrays that are at least 2-dimensional.
因此当hstack 和 vstack 在维度等于1时,其作用相当于stack, 创建新轴。
而当维度大于等于2时,其作用相当于cancatenate, 在已有轴上进行操作。
以上是关于numpy.stack vs concatenate vs hstack vs vstack的主要内容,如果未能解决你的问题,请参考以下文章
numpy.array()是否等于numpy.stack(...,axis = 0)?
Numpy Column Stack with Strings?